- home
- Advanced Search
- Energy Research
- chemical sciences
- Energy Research
- chemical sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2006 United StatesPublisher:American Vacuum Society Authors: Perkins, C. L.; Hasoon, F. S.;doi: 10.1116/1.2194929
A common nonionic surfactant, Triton X-100, was used to modify the chemical bath deposition of CdS “buffer” layers on Cu(In,Ga)Se2 (CIGS) thin films. Addition of the surfactant to the CdS deposition bath allowed increased wetting of Cu(In,Ga)Se2 substrates and an increase in the uniformity of films, especially on model hydrophobic substrates. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy data demonstrate that films produced with the surfactant have the same chemical and electronic properties as films grown without it. In CdS∕Cu(In,Ga)Se2 devices, it was found that Triton X-100 allowed the use of CdS layers that were three to four times thinner than those used normally in high efficiency CIGS-based devices and eliminated the large drops in open-circuit voltage that usually accompany very thin buffer layers. For these thin CdS layers and relative to devices made without the surfactant, average absolute cell efficiencies were increased from 10.5% to 14.8% or by a relative 41%. Visual inspection of the CdS depositions reveals one possible mechanism of the surfactant’s effects: Bubbles that form and adhere to the CIGS surface during the chemical bath deposition are almost completely eliminated with the addition of the TX-100. Thus, junction nonuniformities, pinholes, and thin areas in the CdS layer caused by poor wetting of the substrate surface are sharply reduced, leading to large increases in the open-circuit voltage in devices produced with the surfactant.
Journal of Vacuum Sc... arrow_drop_down Journal of Vacuum Science & Technology A Vacuum Surfaces and FilmsArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1116/1.2194929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Vacuum Sc... arrow_drop_down Journal of Vacuum Science & Technology A Vacuum Surfaces and FilmsArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1116/1.2194929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:EDP Sciences Authors: Hind Hassoune;Mouna Ben Zohra;
Mouna Ben Zohra
Mouna Ben Zohra in OpenAIREAmine Riad;
Abdelilah Alhamanyi;Amine Riad
Amine Riad in OpenAIRESolar energy is a natural source that provides clean and renewable energy, which supplies two types of energy: thermal energy and photovoltaic energy. Whereas, the most effective way to exploit this energy is photovoltaic cells. However, for all the incident solar radiation, the solar panels can absorb a limited quantity of energy. While, the rest of radiation energy gets lost as heat, that increases the temperature of the photovoltaic cells, this is the reason why the productivity of electricity is decreased. Therefore, to exceed this issue and benefit from the two sources of sun radiation, a hybrid thermo-electrical system is proposed. The system is a solar panel surrounded by the phase change material that can absorb the temperature to increase the efficiency of solar system and use this energy to produce a hot water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202129701021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202129701021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 China (People's Republic of), Hong KongPublisher:Wiley Authors:Zhenpeng Li;
Zhenpeng Li
Zhenpeng Li in OpenAIRETao Ma;
Hongxing Yang;
Hongxing Yang
Hongxing Yang in OpenAIRELin Lu;
+1 AuthorsZhenpeng Li;
Zhenpeng Li
Zhenpeng Li in OpenAIRETao Ma;
Hongxing Yang;
Hongxing Yang
Hongxing Yang in OpenAIRELin Lu;
Ruzhu Wang;
Ruzhu Wang
Ruzhu Wang in OpenAIREhandle: 10397/103052
Building‐integrated photovoltaics (BIPVs) stand as a promising solution to provide renewable electricity for achieving zero‐energy buildings, although still hindered from large‐scale implementations due to the difficulty of traditional photovoltaic modules in meeting the standards and aesthetics of architectural materials. The emergence of new photovoltaic materials and devices could pave the way for the future through offering diversity and tunability in colors and transparency along with comparable performance. Herein the recent advances in BIPVs are discussed, starting from an overview of various photovoltaic technologies regarding their material characteristics, state of the art, and adaptability to the built environment. The transparent and colored photovoltaic technologies are then respectively emphasized, concerning design principles, theoretical analysis, technical routes, and corresponding demonstration studies. The various strategies, including the materials and structures adopted to modify the transparency and color of solar cells, are highlighted. Finally, the challenges and future perspectives are addressed, followed by an outlook on factors that are critical for large‐scale implementation of BIPVs in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202000614&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202000614&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors:Masakazu Nakatani;
Masakazu Nakatani
Masakazu Nakatani in OpenAIRENoboru Yamada;
Noboru Yamada
Noboru Yamada in OpenAIREdoi: 10.3390/en12183517
The optical characteristics of a radially symmetrical core-shell spherical (CSSP) lens is analyzed for its suitability to application in microtracking concentrator photovoltaic systems (MTCPVs). The CSSP lens is compared to a conventional homogenous spherical lens through both ray-tracing simulations and outdoor experiments. Simulation results show that the CSSP lens is superior to the conventional homogenous spherical lens in terms of its optical efficiency for long focal lengths, for which the CSSP lens exhibits less spherical and chromatic aberrations. Outdoor experiments are conducted using test concentrator photovoltaic (CPV) modules with prototype CSSP and homogenous spherical lenses; the trend of the measured short circuit current agrees with the that of the simulated optical efficiency for both lenses. Furthermore, compared to the homogenous lens, the CSSP lens significantly increases module efficiency because of its better illumination uniformity at the solar cell surface. The optical characteristics of the CSSP lens are preferable for MTCPVs with a spherical lens array to achieve a higher module efficiency for a wider incidence angle although further studies on more practical system configurations are needed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12183517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Mara Bruzzi;
Mara Bruzzi
Mara Bruzzi in OpenAIREIrene Cappelli;
Irene Cappelli
Irene Cappelli in OpenAIREAda Fort;
Ada Fort
Ada Fort in OpenAIREAlessandro Pozzebon;
+1 AuthorsAlessandro Pozzebon
Alessandro Pozzebon in OpenAIREMara Bruzzi;
Mara Bruzzi
Mara Bruzzi in OpenAIREIrene Cappelli;
Irene Cappelli
Irene Cappelli in OpenAIREAda Fort;
Ada Fort
Ada Fort in OpenAIREAlessandro Pozzebon;
Alessandro Pozzebon
Alessandro Pozzebon in OpenAIREValerio Vignoli;
Valerio Vignoli
Valerio Vignoli in OpenAIREdoi: 10.3390/en15051635
handle: 11365/1197933
This paper aims to demonstrate the viability of energy harvesting for wide area wireless sensing systems based on dye-sensitized solar cells (DSSCs) under diffuse sunlight conditions, proving the feasibility of deploying autonomous sensor nodes even under unfavorable outdoor scenarios, such as during cloudy days, in the proximity of tall buildings, among the trees in a forest and during winter days in general. A flexible thin-film module and a glass thin-film module, both featuring an area smaller than an A4 sheet of paper, were initially characterized in diffuse solar light. Afterward, the protype sensor nodes were tested in a laboratory in two different working conditions, emulating outdoor sunlight in unfavorable lighting and weather to reconstruct a worst-case scenario. A Li-Po battery was employed as a power reserve for a long-range wide area network (LoRaWAN)-based sensor node that transmitted data every 8 h and every hour. To this end, an RFM95x LoRa module was used, while the node energy management was attained by exploiting a nano-power boost charger buck converter integrated circuit conceived for the nano-power harvesting from the light source and the managing of the battery charge and protection. A positive charge balance was demonstrated by monitoring the battery trend along two series of 6 and 9 days, thus allowing us to affirm that the system’s permanent energy self-sufficiency was guaranteed even in the worst-case lighting and weather scenario.
Università degli Stu... arrow_drop_down Università degli Studi di Siena: USiena airArticle . 2022Full-Text: http://hdl.handle.net/11365/1197933Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Siena: USiena airArticle . 2022Full-Text: http://hdl.handle.net/11365/1197933Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 PolandPublisher:Politechnika Koszalinska Authors: Chiranjeev Banne;Depleting conventional energy resources are forcing the world to search for new and renewable energy resources. Solar energy is one of the potent and abundant energy resource .To use the solar energy to its fullest along with conventional technology has specific limitations. These limitations can be eliminated by use of Dye Sensitized Solar Cell (DSSC). DSSC can be seen as promising future technology. It is advantageous over Silicon (Si) based Photovoltaic (PV) cell in terms cost, easy manufacturing, stability at higher temperature, aesthetics, etc. Also it works in indoor conditions i.e. diffused sunlight which nearly not feasible with conventional PV cells. Now Research and Development Departments of many countries like Japan, Germany, USA, Switzerland, India, China and many firms like G-Cell, Oxford PV, Sony, TATA-Dyesol are working on DSSC to improve its various aspects so as to make it more applicable in various conditions. The paper will discuss the concept, construction, working of DSSC. Also it will illustrate current applications of DSSC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30464/jmee.2020.4.2.173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30464/jmee.2020.4.2.173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Uspekhi Fizicheskikh Nauk (UFN) Journal Authors: Milichko, V. A.; Shalin, A. S.;Mukhin, I. S.;
Kovrov, A. E.; +5 AuthorsMukhin, I. S.
Mukhin, I. S. in OpenAIREMilichko, V. A.; Shalin, A. S.;Mukhin, I. S.;
Kovrov, A. E.;Mukhin, I. S.
Mukhin, I. S. in OpenAIREKrasilin, A. A.;
Vinogradov, A. V.;Krasilin, A. A.
Krasilin, A. A. in OpenAIREBelov, P. A.;
Simovski; C. R.;Belov, P. A.
Belov, P. A. in OpenAIREPhysics-Uspekhi arrow_drop_down Physics-UspekhiArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3367/ufne.2016.02.037703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Physics-Uspekhi arrow_drop_down Physics-UspekhiArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3367/ufne.2016.02.037703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Authors:J.A. Andrade-Arvizu;
Zouheir Sekkat; Zouheir Sekkat; Nada Benhaddou; +8 AuthorsJ.A. Andrade-Arvizu
J.A. Andrade-Arvizu in OpenAIREJ.A. Andrade-Arvizu;
Zouheir Sekkat; Zouheir Sekkat; Nada Benhaddou; Victor Izquierdo-Roca;J.A. Andrade-Arvizu
J.A. Andrade-Arvizu in OpenAIREEdgardo Saucedo;
Edgardo Saucedo;Edgardo Saucedo
Edgardo Saucedo in OpenAIREMaxim Guc;
Sergio Giraldo; Ignacio Becerril-Romero; Safae Aazou; Yudania Sánchez;Maxim Guc
Maxim Guc in OpenAIREhandle: 2117/343796
This work aims to unveil the optimal annealing conditions and surface treatments of CZGeSe absorbers, synthesized using vacuum-based deposition technique, with an eye to optimizing the main parameters allowing better control of secondary phases formation and improving crystalline quality of this absorber. Firstly, a comparative study is given of one and two-step annealing profiles, where, for each thermal treatment, the optimal temperature is probed. The second section of this study underlines the evaluation of the surface treatment effect on the as-annealed absorber using different etching agents. Finally, the effect of different post-annealing treatment temperatures on the overall performance of the fabricated devices is evaluated. For the studied optimizations, a deep understanding of the cell behavior is provided through structural, morphological and electrical characterizations. Preliminary results have given an efficiency up to 5.6% with higher Voc = 572 mV and FF = 65% compared to the reported record cell using similar absorber (Voc = 558 mV, FF = 59%). This performance is linked to the implementation of a two-step annealing process with lower temperatures (330 °C/480 °C) as it showed the best crystallinity-efficiency trade-off along with the smallest amount of ZnSe secondary phase among all the thermal routines studied. In addition, after the evaluation of several etching agents, the implementation of a KCN etching has shown to be the most effective leading to a remarkable improvement of the PN junction through a surface passivation. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 39visibility views 39 download downloads 54 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:MDPI AG Publicly fundedAuthors: Liao, Kang-Shyang;Yambem, Soniya;
Haldar, Amrita; Alley, Nigel; +1 AuthorsYambem, Soniya
Yambem, Soniya in OpenAIRELiao, Kang-Shyang;Yambem, Soniya;
Haldar, Amrita; Alley, Nigel; Curran, Seamus;Yambem, Soniya
Yambem, Soniya in OpenAIREdoi: 10.3390/en3061212
Organic solar cells show great promise as an economically and environmentally friendly technology to utilize solar energy because of their simple fabrication processes and minimal material usage. However, new innovations and breakthroughs are needed for organic solar cell technology to become competitive in the future. This article reviews research efforts and accomplishments focusing on three issues: power conversion efficiency, device stability and processability for mass production, followed by an outlook for optimizing OSC performance through device engineering and new architecture designs to realize next generation organic solar cells.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2010License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3061212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2010License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3061212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:American Chemical Society (ACS) Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE180100383handle: 1885/238639
The development of commercially viable solar hydrogen generators needs to be accelerated to meet the needs of the emerging global hydrogen economy. Many different hydrogen generators have been demo...
Australian National ... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b01030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b01030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu