- home
- Advanced Search
- Energy Research
- French National Research Agency (AN...
- Energy Research
- French National Research Agency (AN...
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, SwitzerlandPublisher:American Chemical Society (ACS) Funded by:ANR | VISION-NIRANR| VISION-NIRFrédéric Sauvage; Stefan Haacke; Raffaele Borrelli; Yameng Ren; Ilias Nikolinakos; Shaik M. Zakeeruddin; Fionnuala Grifoni; Iva Dzeba; Michael Graetzel; Thomas Alnasser; Vittoria Novelli; Waad Naim; Nadia Barbero; Nadia Barbero; Claudia Barolo; Amalia Velardo;Most photovoltaic (PV) technologies are opaque to maximize visible light absorption. However, see-through solar cells open additional perspectives for PV integration. Looking beyond maximizing visible light harvesting, this work considers the human eye photopic response to optimize a selective near-infrared sensitizer based on a polymethine cyanine structure (VG20-C x ) to render dye-sensitized solar cells (DSSCs) fully transparent and colorless. This peculiarity was achieved by conferring to the dye the ability to strongly and sharply absorb beyond 800 nm (S0-S1 transition) while rejecting the upper S0-S n contributions far in the blue where the human retina is poorly sensitive. When associated with an aggregation-free anatase TiO2 photoanode, the selective NIR-DSSC can display 3.1% power conversion efficiency, up to 76% average visible transmittance (AVT), a value approaching the 78% AVT value of a standard double glazing window while reaching a color rendering index (CRI) of 92.1%. The ultrafast and fast charge transfer processes are herein discussed, clarifying the different relaxation channels from the dye monomer excited states and highlighting the limiting steps to provide future directions to enhance the performances of this nonintrusive NIR-DSSC technology.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacsau.1c00045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacsau.1c00045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, SwitzerlandPublisher:American Chemical Society (ACS) Funded by:ANR | VISION-NIRANR| VISION-NIRFrédéric Sauvage; Stefan Haacke; Raffaele Borrelli; Yameng Ren; Ilias Nikolinakos; Shaik M. Zakeeruddin; Fionnuala Grifoni; Iva Dzeba; Michael Graetzel; Thomas Alnasser; Vittoria Novelli; Waad Naim; Nadia Barbero; Nadia Barbero; Claudia Barolo; Amalia Velardo;Most photovoltaic (PV) technologies are opaque to maximize visible light absorption. However, see-through solar cells open additional perspectives for PV integration. Looking beyond maximizing visible light harvesting, this work considers the human eye photopic response to optimize a selective near-infrared sensitizer based on a polymethine cyanine structure (VG20-C x ) to render dye-sensitized solar cells (DSSCs) fully transparent and colorless. This peculiarity was achieved by conferring to the dye the ability to strongly and sharply absorb beyond 800 nm (S0-S1 transition) while rejecting the upper S0-S n contributions far in the blue where the human retina is poorly sensitive. When associated with an aggregation-free anatase TiO2 photoanode, the selective NIR-DSSC can display 3.1% power conversion efficiency, up to 76% average visible transmittance (AVT), a value approaching the 78% AVT value of a standard double glazing window while reaching a color rendering index (CRI) of 92.1%. The ultrafast and fast charge transfer processes are herein discussed, clarifying the different relaxation channels from the dye monomer excited states and highlighting the limiting steps to provide future directions to enhance the performances of this nonintrusive NIR-DSSC technology.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacsau.1c00045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacsau.1c00045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu