- home
- Advanced Search
- Energy Research
- European Commission
- Energy Research
- European Commission
description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2020Publisher:Zenodo Funded by:EC | THERMOSSEC| THERMOSSAuthors: Nicolas Lamaison; David Chèze; Cédric Paulus;Decentralized surplus feed-in of solar heat into a District Heating Network (DHN) is here addressed. The heat collected from solar panels located on rooftops of DHN connected buildings may either be used locally for domestic hot water and space heating or fed into the DHN. Two-way substations able to transfer heat from and into the network seem then to be required utilities. The present paper presents the specifications (60kW capacity, return-to-supply connection) and promising architectures of such two-way substation based on a previous analysis. A first-of-a-kind Modelica-based dynamic model of the substation together with the consumer and the solar field connected to it is then detailed. Two-day simulations considering real operating conditions of DHN were then performed. The results highlighted i) the good match between the periods of solar heat reinjection with the periods of low supply temperature and differential pressure and ii) the decisive benefit of the reinjection to increase the part of useful solar energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3741441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3741441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2020Publisher:Zenodo Funded by:EC | RELaTEDEC| RELaTEDAuthors: Mikel Lumbreras Mugaguren; Peter Friis Østergaard; Jakob Fester; Roberto Garay Martinez;In recent years, Machine Learning has become one of the most used techniques when modelling relationships between different parameters. Inspired by the successful integration of Machine Learning in many other areas, it is beginning to draw attention in the district heating sector as well. The application of Machine Learning in the context of district heating has an obvious potential as a component of tomorrows heating networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6611523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 24 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6611523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Presentation , Conference object 2018 SpainPublisher:Zenodo Funded by:EC | RELaTEDEC| RELaTEDAuthors: Sanchez Zabala, Victor; Garay Martinez, Roberto;In most cases, building service designers choose between Solar thermal (ST) and District Heating (DH) technologies for their integration in buildings. By doing so, only a fraction of the buildings within a particular district is used for ST, while at the same time energy intensity in DH networks can be reduced. In some cases, building-integrated solar thermal systems are connected to DH networks by means of dedicated pipes. In all these cases, sub-optimal situations are reached with lower fraction of renewable heat, reduced network strength and/or additional heat losses. In this paper, a consummer substation concept is proposed with reversible heat flow and net metering, which avoids local thermal storage in the solar loop. Adaptations required for multi-dwelling buildings are presented
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5947282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5947282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | SMARTEESEC| SMARTEESWilson, Ruth; Colley, Kathryn; Craig, Tony; Salt, Doug; Polhill, Gary; Somervail, Phoebe;Survey of Aberdeen City residents conducted by the James Hutton Institute for the SMARTEES project in December 2019 to January 2020 (n=838). The survey aims to understand what influences people's decisions to join a district heating network and includes data pertaining to their attitudes, behaviours and social networks. Files include the dataset in three formats: .csv, .rdata and .sav. The questionnaire, a data dictionary and background and sampling details are also included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5591894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 89visibility views 89 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5591894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2021Publisher:Zenodo Funded by:EC | RELaTEDEC| RELaTEDAuthors: Caramaschi, Matteo; Shifter-Holm, Torben; Østergaard, Kasper Korsholm; Holm, Ted; +7 AuthorsCaramaschi, Matteo; Shifter-Holm, Torben; Østergaard, Kasper Korsholm; Holm, Ted; Kroon, David; Rubin, Patxi; Imar, Jorge; Garay, Roberto; Garrido, Antonio; Meir, Michaela; Rekstad, John;Ultra-Low temperature district heating introduces multiple benefits at network level, as the reduction of heat losses and the improvement of heat generation efficiency. ULTDH also facilitates the integration of low temperatures renewable energy sources and waste heat into the district heating network. Renewable heat sources as solar thermal and heat pumps can be coupled to the district heating network and the buildings through specially designed district heating substations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6611538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 20visibility views 20 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6611538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Comitetul National Roman al Consiliului Mondial al Energiei Funded by:EC | WEDISTRICTEC| WEDISTRICTAuthors: Pătrașcu, Roxana; Ionescu, Constantin; Sandu, Mihai-Rareș;Within the framework of this article the management system of WEDISTRICT – DEMO Romania is presented. The key performance indicators of energy, economics, environmental impact or social type are explained and analysed throughout the entire project. The general objective of the European project is to demonstrate the possibility of switching off from fossil fuels usage for centralized generation of thermal energy, by optimally integrating different types of renewable energy sources in the existing systems of different European countries. Throughout the project, 10 technologies will be developed, which will be integrated in 4 demonstrators. One of the demonstrators will be developed and integrated and University POLITEHNICA Bucharest.
EMERG - Energy Envir... arrow_drop_down EMERG - Energy Environment Efficiency Resources GlobalizationArticle . 2020 . Peer-reviewedData sources: CrossrefEMERG - Energy Environment Efficiency Resources GlobalizationArticleLicense: CC BY NCData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37410/emerg.2020.3.06&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 27 Powered bymore_vert EMERG - Energy Envir... arrow_drop_down EMERG - Energy Environment Efficiency Resources GlobalizationArticle . 2020 . Peer-reviewedData sources: CrossrefEMERG - Energy Environment Efficiency Resources GlobalizationArticleLicense: CC BY NCData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37410/emerg.2020.3.06&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Informa UK Limited Funded by:EC | EMB3RsEC| EMB3RsAuthors: António Sérgio Faria; Tiago Soares; José Maria Cunha; Zenaida Mourão;The integration of prosumers (consumers who can both consume and produce energy) in a current district heating network (DHN) brings new challenges to the market and DHN operation, since they can change the thermal flow in the DHN and increase competition in the district heating market. In this scope, this work proposes the implementation of a coordination methodology based on a peer-to-peer (P2P) market to enable bilateral energy trades between producers, prosumers and consumers, coupled with the DHN operation. A Nordic DHN containing prosumers is used to test and validate the proposed methodology. The results point out that the coordination methodology is able to provide compromise solutions between the market negotiation and the DHN operation. An important conclusion is that the coordination methodology encourages prosumer integration in DHN, increasing market competition that may pull down the energy costs for consumers while avoiding DHN’s operating and management burdens. This work is partially supported by the European Union’s Horizon 2020 through the EU Framework Program for Research and Innovation, within the EMB3Rs project under agreement No. 847121.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567249.2023.2280568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567249.2023.2280568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:EDP Sciences Funded by:EC | EnvisionEC| EnvisionAuthors: I. Rossi; L. Magistri; S.J.F. Erich; D. Rattazzi;This work aims to understand the potential of an innovative technology for solar energy harvesting in a District Heating Network (DHN). The considered technology is aesthetic solar façade thermal panel. In order to guarantee the temperatures required by a 3rd generation DHN (around 75°C), a Heat Pump, using as cold source the heat from the panels, is necessary. It is worth noting that the coupling between façade panels and Heat Pump requires accurate evaluations. The optimum condition for the façade panels is to work at low temperatures (close to ambient or even below), while the Heat Pump reaches high Coefficient Of Performance (COP) when the temperature difference between hot and cold sources is minimized. In the first part of the study, a system model has been built using Matlab SIMULINK using results of tests on the panels already performed inside the H2020 ENVISION project. Different colours are considered. In the second part, a predictive mode-based strategy has been defined and tuned on the system in order to guarantee the best system performances in interaction with the DHN. This work will allow to understand whether this technology is feasible in the presented scenario and this layout can improve local energy exchange.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:EC | MFPEC| MFPMohamed Hany Abokersh; Kangkana Saikia; Luisa F. Cabeza; Dieter Boer; Manel Vallès;The movement toward the 4th generation district heating (4GDH) embraces a great opportunity to support the future smart energy development concept. However, its development calls for addressing technological and economic obstacles aligning with the need for a reformation of the energy market to ensure the quality of service. In this context, our paper presents a comprehensive analysis based on a multi-objective optimization framework incorporating an artificial neural network-based model for the possibility of integrating heat pump (HP) into solar assisted district heating system (SDHS) with seasonal thermal energy storage to support the sustainable transition toward 4GDH. The study evaluates the performance of the proposed system with the help of key performance indicators (KPI) related to the 4GDH characteristics and key stakeholders for possible market growth with consideration for the environmental benefits. The proposed analysis is applied to a small neighbourhood of 10 residential buildings located in Madrid (Spain) to investigate the optimal integration of HP under different control strategies into a SDHS. Inherent the SDHS operator perspective, the results reveal a significant improvement in the stabilization of the SDHS performance due to the HP integration where the solar field temperature never exceeds 80 ◦C, and the seasonal storage tank (SST) temperature stands at 85.4 ◦C. In addition, the share of solar energy stands above 86.1% with an efficiency of 73.9% for the SST, while the seasonal HP performance factor stands above 5.5 for all optimal scenarios. From the investor viewpoint, an energy price of 59.1 Euro/MWh can be achieved for the proposed system with a payback period of 26 years. Finally, from the policymaker perspective, along with the significant economic and sustainable improvement in the SDHS performance, a substantial environmental improvement of 82.5% is achieved when compared to the conventional boiler heating system. The proposed analysis reflects a great motivation for different stakeholders to propose this system as a path toward the 4GDH in the future district energy systems. The work is funded by the Spanish government RTI2018-093849-B-C31 and RTI2018-093849-B-C33. The authors would like to thank the Catalan Government for the quality accreditation given to their research group (GREiA – 2017 SGR 1537, AGACAPE – 2017 SGR 1409). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme. This work is partially funded by the Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación (AEI) (RED2018-102431-T). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 713679 and from the Universitat Rovira i Virgili (URV).
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2020 SpainPublisher:EDP Sciences Funded by:EC | RELaTED, EC | E2VENTEC| RELaTED ,EC| E2VENTGaray-Martinez, Roberto; Arregi, Beñat; Lumbreras, Mikel; Zurro, Belén; Gonzalez, Jose Manuel; Hernandez, Jose Luis;In the last decades, a growing industry has been created in relation to building envelope retrofits. Linked to the lack of financial capacity of many building owners, innovative instruments such as energy performance contracts have been promoted by public bodies. This kind of instruments require of detailed energy assessment processes in order to define the expected heat load reduction and the associated economic flows between building owners and Energy Services Companies. When dealing with building envelopes, existing methods for building envelope heat loss characterization require of substantial efforts in terms of equipment and time, which makes them difficult to apply in real practice. In this paper, a novel method is proposed based on whole-building heat load assessment by means of heat meters, and analytical calculations of building envelope transmission heat load coefficients. This method, which requires minimal or no additional equipment, can be used over historical data from District Heating systems. It assigns a specific load fraction to building envelope heat transfer and allows to assess the expected reduction due to the building envelope retrofit. Numerical and experimental data is presented based on an educational building in the city of Burgos, Spain.
E3S Web of Conferenc... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202017225001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 20visibility views 20 download downloads 17 Powered bymore_vert E3S Web of Conferenc... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202017225001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2020Publisher:Zenodo Funded by:EC | THERMOSSEC| THERMOSSAuthors: Nicolas Lamaison; David Chèze; Cédric Paulus;Decentralized surplus feed-in of solar heat into a District Heating Network (DHN) is here addressed. The heat collected from solar panels located on rooftops of DHN connected buildings may either be used locally for domestic hot water and space heating or fed into the DHN. Two-way substations able to transfer heat from and into the network seem then to be required utilities. The present paper presents the specifications (60kW capacity, return-to-supply connection) and promising architectures of such two-way substation based on a previous analysis. A first-of-a-kind Modelica-based dynamic model of the substation together with the consumer and the solar field connected to it is then detailed. Two-day simulations considering real operating conditions of DHN were then performed. The results highlighted i) the good match between the periods of solar heat reinjection with the periods of low supply temperature and differential pressure and ii) the decisive benefit of the reinjection to increase the part of useful solar energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3741441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3741441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2020Publisher:Zenodo Funded by:EC | RELaTEDEC| RELaTEDAuthors: Mikel Lumbreras Mugaguren; Peter Friis Østergaard; Jakob Fester; Roberto Garay Martinez;In recent years, Machine Learning has become one of the most used techniques when modelling relationships between different parameters. Inspired by the successful integration of Machine Learning in many other areas, it is beginning to draw attention in the district heating sector as well. The application of Machine Learning in the context of district heating has an obvious potential as a component of tomorrows heating networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6611523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 24 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6611523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Presentation , Conference object 2018 SpainPublisher:Zenodo Funded by:EC | RELaTEDEC| RELaTEDAuthors: Sanchez Zabala, Victor; Garay Martinez, Roberto;In most cases, building service designers choose between Solar thermal (ST) and District Heating (DH) technologies for their integration in buildings. By doing so, only a fraction of the buildings within a particular district is used for ST, while at the same time energy intensity in DH networks can be reduced. In some cases, building-integrated solar thermal systems are connected to DH networks by means of dedicated pipes. In all these cases, sub-optimal situations are reached with lower fraction of renewable heat, reduced network strength and/or additional heat losses. In this paper, a consummer substation concept is proposed with reversible heat flow and net metering, which avoids local thermal storage in the solar loop. Adaptations required for multi-dwelling buildings are presented
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5947282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5947282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | SMARTEESEC| SMARTEESWilson, Ruth; Colley, Kathryn; Craig, Tony; Salt, Doug; Polhill, Gary; Somervail, Phoebe;Survey of Aberdeen City residents conducted by the James Hutton Institute for the SMARTEES project in December 2019 to January 2020 (n=838). The survey aims to understand what influences people's decisions to join a district heating network and includes data pertaining to their attitudes, behaviours and social networks. Files include the dataset in three formats: .csv, .rdata and .sav. The questionnaire, a data dictionary and background and sampling details are also included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5591894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 89visibility views 89 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5591894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2021Publisher:Zenodo Funded by:EC | RELaTEDEC| RELaTEDAuthors: Caramaschi, Matteo; Shifter-Holm, Torben; Østergaard, Kasper Korsholm; Holm, Ted; +7 AuthorsCaramaschi, Matteo; Shifter-Holm, Torben; Østergaard, Kasper Korsholm; Holm, Ted; Kroon, David; Rubin, Patxi; Imar, Jorge; Garay, Roberto; Garrido, Antonio; Meir, Michaela; Rekstad, John;Ultra-Low temperature district heating introduces multiple benefits at network level, as the reduction of heat losses and the improvement of heat generation efficiency. ULTDH also facilitates the integration of low temperatures renewable energy sources and waste heat into the district heating network. Renewable heat sources as solar thermal and heat pumps can be coupled to the district heating network and the buildings through specially designed district heating substations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6611538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 20visibility views 20 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6611538&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Comitetul National Roman al Consiliului Mondial al Energiei Funded by:EC | WEDISTRICTEC| WEDISTRICTAuthors: Pătrașcu, Roxana; Ionescu, Constantin; Sandu, Mihai-Rareș;Within the framework of this article the management system of WEDISTRICT – DEMO Romania is presented. The key performance indicators of energy, economics, environmental impact or social type are explained and analysed throughout the entire project. The general objective of the European project is to demonstrate the possibility of switching off from fossil fuels usage for centralized generation of thermal energy, by optimally integrating different types of renewable energy sources in the existing systems of different European countries. Throughout the project, 10 technologies will be developed, which will be integrated in 4 demonstrators. One of the demonstrators will be developed and integrated and University POLITEHNICA Bucharest.
EMERG - Energy Envir... arrow_drop_down EMERG - Energy Environment Efficiency Resources GlobalizationArticle . 2020 . Peer-reviewedData sources: CrossrefEMERG - Energy Environment Efficiency Resources GlobalizationArticleLicense: CC BY NCData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37410/emerg.2020.3.06&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 27 Powered bymore_vert EMERG - Energy Envir... arrow_drop_down EMERG - Energy Environment Efficiency Resources GlobalizationArticle . 2020 . Peer-reviewedData sources: CrossrefEMERG - Energy Environment Efficiency Resources GlobalizationArticleLicense: CC BY NCData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37410/emerg.2020.3.06&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Informa UK Limited Funded by:EC | EMB3RsEC| EMB3RsAuthors: António Sérgio Faria; Tiago Soares; José Maria Cunha; Zenaida Mourão;The integration of prosumers (consumers who can both consume and produce energy) in a current district heating network (DHN) brings new challenges to the market and DHN operation, since they can change the thermal flow in the DHN and increase competition in the district heating market. In this scope, this work proposes the implementation of a coordination methodology based on a peer-to-peer (P2P) market to enable bilateral energy trades between producers, prosumers and consumers, coupled with the DHN operation. A Nordic DHN containing prosumers is used to test and validate the proposed methodology. The results point out that the coordination methodology is able to provide compromise solutions between the market negotiation and the DHN operation. An important conclusion is that the coordination methodology encourages prosumer integration in DHN, increasing market competition that may pull down the energy costs for consumers while avoiding DHN’s operating and management burdens. This work is partially supported by the European Union’s Horizon 2020 through the EU Framework Program for Research and Innovation, within the EMB3Rs project under agreement No. 847121.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567249.2023.2280568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15567249.2023.2280568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:EDP Sciences Funded by:EC | EnvisionEC| EnvisionAuthors: I. Rossi; L. Magistri; S.J.F. Erich; D. Rattazzi;This work aims to understand the potential of an innovative technology for solar energy harvesting in a District Heating Network (DHN). The considered technology is aesthetic solar façade thermal panel. In order to guarantee the temperatures required by a 3rd generation DHN (around 75°C), a Heat Pump, using as cold source the heat from the panels, is necessary. It is worth noting that the coupling between façade panels and Heat Pump requires accurate evaluations. The optimum condition for the façade panels is to work at low temperatures (close to ambient or even below), while the Heat Pump reaches high Coefficient Of Performance (COP) when the temperature difference between hot and cold sources is minimized. In the first part of the study, a system model has been built using Matlab SIMULINK using results of tests on the panels already performed inside the H2020 ENVISION project. Different colours are considered. In the second part, a predictive mode-based strategy has been defined and tuned on the system in order to guarantee the best system performances in interaction with the DHN. This work will allow to understand whether this technology is feasible in the presented scenario and this layout can improve local energy exchange.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Elsevier BV Funded by:EC | MFPEC| MFPMohamed Hany Abokersh; Kangkana Saikia; Luisa F. Cabeza; Dieter Boer; Manel Vallès;The movement toward the 4th generation district heating (4GDH) embraces a great opportunity to support the future smart energy development concept. However, its development calls for addressing technological and economic obstacles aligning with the need for a reformation of the energy market to ensure the quality of service. In this context, our paper presents a comprehensive analysis based on a multi-objective optimization framework incorporating an artificial neural network-based model for the possibility of integrating heat pump (HP) into solar assisted district heating system (SDHS) with seasonal thermal energy storage to support the sustainable transition toward 4GDH. The study evaluates the performance of the proposed system with the help of key performance indicators (KPI) related to the 4GDH characteristics and key stakeholders for possible market growth with consideration for the environmental benefits. The proposed analysis is applied to a small neighbourhood of 10 residential buildings located in Madrid (Spain) to investigate the optimal integration of HP under different control strategies into a SDHS. Inherent the SDHS operator perspective, the results reveal a significant improvement in the stabilization of the SDHS performance due to the HP integration where the solar field temperature never exceeds 80 ◦C, and the seasonal storage tank (SST) temperature stands at 85.4 ◦C. In addition, the share of solar energy stands above 86.1% with an efficiency of 73.9% for the SST, while the seasonal HP performance factor stands above 5.5 for all optimal scenarios. From the investor viewpoint, an energy price of 59.1 Euro/MWh can be achieved for the proposed system with a payback period of 26 years. Finally, from the policymaker perspective, along with the significant economic and sustainable improvement in the SDHS performance, a substantial environmental improvement of 82.5% is achieved when compared to the conventional boiler heating system. The proposed analysis reflects a great motivation for different stakeholders to propose this system as a path toward the 4GDH in the future district energy systems. The work is funded by the Spanish government RTI2018-093849-B-C31 and RTI2018-093849-B-C33. The authors would like to thank the Catalan Government for the quality accreditation given to their research group (GREiA – 2017 SGR 1537, AGACAPE – 2017 SGR 1409). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme. This work is partially funded by the Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación (AEI) (RED2018-102431-T). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 713679 and from the Universitat Rovira i Virgili (URV).
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaEnergy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2020 SpainPublisher:EDP Sciences Funded by:EC | RELaTED, EC | E2VENTEC| RELaTED ,EC| E2VENTGaray-Martinez, Roberto; Arregi, Beñat; Lumbreras, Mikel; Zurro, Belén; Gonzalez, Jose Manuel; Hernandez, Jose Luis;In the last decades, a growing industry has been created in relation to building envelope retrofits. Linked to the lack of financial capacity of many building owners, innovative instruments such as energy performance contracts have been promoted by public bodies. This kind of instruments require of detailed energy assessment processes in order to define the expected heat load reduction and the associated economic flows between building owners and Energy Services Companies. When dealing with building envelopes, existing methods for building envelope heat loss characterization require of substantial efforts in terms of equipment and time, which makes them difficult to apply in real practice. In this paper, a novel method is proposed based on whole-building heat load assessment by means of heat meters, and analytical calculations of building envelope transmission heat load coefficients. This method, which requires minimal or no additional equipment, can be used over historical data from District Heating systems. It assigns a specific load fraction to building envelope heat transfer and allows to assess the expected reduction due to the building envelope retrofit. Numerical and experimental data is presented based on an educational building in the city of Burgos, Spain.
E3S Web of Conferenc... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202017225001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 20visibility views 20 download downloads 17 Powered bymore_vert E3S Web of Conferenc... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202017225001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu