Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
19 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sevastjanoff, Jani;

    Työssä on esitetty pääpiirteissään Joutsenon Energia Oy:n kaukolämpöjärjestelmä lämpökeskuksineen ja kaukolämpöverkkoineen sekä toimintaa ohjaava lainsäädäntö. Kunnossapitoa on käsitelty ensin teoreettisesti yleisellä tasolla, keskittyen kunnossapitostrategioihin ja niiden valintaan, kunnossapitotiedon hallintaan sekä kunnossapidon organisointiin. Työn puitteissa otettiin käyttöön myös Komartekin kaukolämmön kunnossapito-ohjelma Lämpökunto sekä graafinen informaatiojärjestelmä MAP, johon mallinnettiin mm. Joutsenon kaukolämpöverkkojen johdot ja kaivot. Tutkimustuloksina on esitelty mahdollisuuksia tehostaa kaukolämpöverkkojen ja –keskusten kunnossapitoa ja käyttää Lämpökuntoa tässä apuvälineenä. Kaukolämpöverkoille tehtiin perusparannustarpeen kartoitus sekä keskustaajaman kaukolämpöverkon uusimiselle aikatauluehdotus. Lämpökeskuksia tarkasteltiin niiden energiataloudellisuuden ja käyttöluotettavuuden kannalta ja pyrittiin löytämään keinoja näiden tekijöiden parantamiseksi. The thesis was made for a municipal corporation, Joutsenon Energia Oy, which pro-vides its customers with electricity, district heat and natural gas. To begin with, the district heating system including the district heating centres and networks, as well as the binding legislation, are described in the work. Secondly, the general maintenance theory is presented. The main aspects covered in the section include the basic strategies, data systems and organising of maintenance. Subsequently, the maintaining of the district heating centres and networks is examined. The district heating centres are considered mainly in order to define their energy efficiency and reliability and also to discover potential to improve operations. Networks are studied in order to recognise the needs for fundamental improvement and if needed, the timetable for improvement is presented. In addition to all this, a maintenance software with a graphic interface was installed and adopted including the modelling of the district heating networks.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    LUTPub
    2003
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      LUTPub
      2003
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Laukkanen, Pasi;

    Diplomityössä kehitetään Savonlinnan kaupungin kaukolämmöntuotantoa ja kaukolämpöverkon käyttöä muuttuneessa ajotilanteessa. Muuttunut tilanne syntyy, kun Savonlinnaan rakennetaan uusi lämmitysvoimalaitos. Kaukolämpöverkkoa yhdistetään samanaikaisesti viidestä erillisestä verkosta yhdeksi kokonaiseksi verkoksi. Kaukolämmöntuotannon ja verkon käytön optimointi suoritettiin Process Vision Oy: n kehittämällä kaukolämpöverkon laskentaohjelmalla. Optimoinnissa pyrittiin saamaan mahdollisimman aikaisin taloudellisin laitos eli uusi hakelaitos täyteen tehoon ja tarvittava lisäteho otettiin öljylämpökeskuksista. Hakelaitoksen käytettävyyttä lisättiin rakentamalla kaukolämpöverkkoon välipumppaamo ja kaukolämpöveden apujäähdytin. Hakelaitosta voidaan käyttää 0°C ulkolämpötilaan asti, mutta kun käytetään apuna välipumppausta voidaan pumppauksellisesti pelkästään hakelaitokselta syöttää tehoa aina 14 °C lämpötilaan asti. Välipumppauksen avulla vuosittain vähennetään öljyn ja lisätään hakkeen polttoa n. 10,4 GWh. Nykyisillä öljyn ja hakkeen hinnoilla säästö vuodessa on n. 887000 mk. Välipumppauksella vähennetään lisäksi kaukolämpöverkon pumppauskustannuksia. The aim of this work was to optimize the production and delivery of district heating in Savonlinna town. The production of district heating changes, when new heating and power plant will be built and district heating network will be adjointed from five to one. Optimization was made by computer program Lämpö Nexus, producted by Process Vision Oy. In the optimization the use of new chip power plant will be maximized and the rest of the demanded power will be produced by oil heating plants. The availability of chip power plant will be added by pumping the district heat water and by using auxliary cooling system in district heat network. The chip power plant can be used to 0 °C outdoor temperature, but by pumping district heat water in network the heat production can be accomplished as far as 14 °C outdoor temperature. Then the use of oil will be decreased and use of chips will be increased about 10,4 GWh every year. The save with today's oil and chip charges will be about 887000 mk every year. Pumping costs will also be decreased by pumping the district heat water in network.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    LUTPub
    2000
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      LUTPub
      2000
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Dans la continuité du projet de semestre 5 « Simulation et optimisation SIG du réseau CAD de Broc », il a été mis en évidence la nécessité d’optimiser la prise de mesures aux sous-stations ainsi qu’à la centrale de chauffe de Broc. Malheureusement, après avoir analysé les relevés de mesures aux sous-stations en conditions réelles, il s’est avéré que les valeurs ne peuvent pas être exploitées en vue de valider le Solver Eguzki. C’est pourquoi des mesures ont été prélevées directement sur les écrans des automates à une des sous-stations du réseau de chaleur à distance. Il faut savoir que les sous-stations composant le réseau CAD sont dépourvues d’instruments permettant de relever des mesures de pression. Il s’est avéré judicieux d’installer des sondes de pression à la sous-station précédemment citée en vue de valider les pertes de charge au niveau de l’échangeur et de la vanne 2 voies dépendant notamment du débit et du coefficient kvs. Après avoir valider le Solver Eguzki en effectuant diverses simulations se basant notamment sur les mesures susmentionnées, il a été possible de définir que l’algorithme pouvait atteindre une précision de ±12.8%. Ensuite, il a été question de chiffrer les gains économiques et énergétiques qui pouvaient être réalisés en exploitant le Solver Eguzki. En se basant sur des puissances horaires simulées et obtenues grâce au logiciel CitySim, diverses simulations ont été effectuées avec Eguzki. A l’aide de celles-ci, il a été possible de déterminer la nouvelle courbe MCR des pompes et de la comparer à celle actuellement exploitée à la centrale de chauffe de Broc. Les différents points de fonctionnement obtenus par simulation et l’équivalence pour le modèle de régulation actuel ont été insérés sur le site du fournisseur des pompes afin de déterminer la puissance électrique nette demandée par les pompes. Cette première optimisation a permis de définir que la courbe de régulation actuelle n’est pas adaptée et que les coûts électriques annuels peuvent être diminuer d’au moins 77.0% en utilisant la courbe MCR des pompes déterminée à l’aide du Solver Eguzki. Dans une deuxième phase, une optimisation dimensionnelle a été effectuée en se basant sur le jour type le plus critique déterminé sur la base des puissances horaires simulées avec CitySim. A partir de simulations effectuées avec Eguzki, les diamètres des conduites constituant le réseau CAD ont pu être modifiés en vue d’atteindre un équilibre optimisé entre les déperditions thermiques dans le sol et les pertes de charge que doivent remonter les pompes à la centrale de chauffe.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Thesis . 2019
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Thesis . 2019
    Data sources: Datacite
    ZENODO
    Other literature type . 2019
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility58
    visibilityviews58
    downloaddownloads23
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Thesis . 2019
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Thesis . 2019
      Data sources: Datacite
      ZENODO
      Other literature type . 2019
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ikäheimo, Jussi; Forsström, Juha; Shemeikka, Jari; Klobut, Krzysztof; +4 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VIRTA
    Report . 2005
    Data sources: VIRTA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VIRTA
      Report . 2005
      Data sources: VIRTA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Uitti, Jani;

    Tässä diplomityössä on tarkasteltu Oulun Energian kaukolämpötoiminnan kehitystä lähitulevaisuudessa. Työn yhteydessä selvitettiin nykyisessä tilanteessa mitoituslämpötilaa -32 oC vastaava tehotilastollisen analyysin avulla ja laadittiin kasvuennuste kaukolämmityksen tehontarpeesta seuraavalle viidelletoista vuodelle. Kasvuennusteen perusteella on tehty tarkastelu kaukolämmön varatehon riittävyydestä. Verkoston tehonsiirtokykyä nykyisissä ja tulevaisuuden kuormitustilanteissa on tarkasteltu Process VisioninGrades Heating -verkostolaskentaohjelmiston avulla. Tarkastelun perusteella kaukolämpöverkoston siirtokyky on kohtalaisen hyvä. Verkoston ongelmakohtia ovat länsi-itäsuunnassa olevat siirtolinjat. Varatehon määrä tulee laskemaan lähivuosina alle suositeltavan määrän, mikäli uutta lämmöntuotantokapasiteettia ei rakenneta. Alkuvaiheessa paras ratkaisu tilanteen korjaamiseksi olisi uusien lämpökeskusten rakentaminen sekä kaupungin etelä- että itä-osiin. 2010-luvulla tarve uuden voimalaitoksen rakentamiselle kaukolämpötehon tarpeen kattamiseksi tulee kasvamaan. This thesis studies the development of Oulun Energia's district heating network and the production of district heating in the near future. The demand of the district heating power in dimensioning temperature of -32 oC was obtained using statistical analysis. Furthermore, a growth forecast of the district heating power demand for the next fifteen years was prepared. Part of the thesis was to examine the adequacy ofthe reserve heating power capacity in the near future. This was done on the basis of the growth forecast of the district heating power. The transfer capacity of the district heating network was studied in current and future load situationsusing Process Vision's Grades Heating network computation software application. Based on the analysis, the transfer capacity of the districtheating network is rather good. The problematic transfer pipelines are the onesthat run from west to east. The amount of reserve district heating power will drop under the common recommendation, if new capacity is not going to be built. At the beginning the best solution is to build new heating centres to the south and the east regions of the city. On the next decade the demand for a new power plant to satisfy the need of district heating power will grow.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    LUTPub
    2006
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      LUTPub
      2006
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ronkainen, Sami;

    Tämän työn tarkoituksena on tarkastella tulevaisuuden kehitysnäkymien vaikutusta Vaasan kaukolämpötoimintaan. Komartekin Flowra 32 verkostolaskentaohjelman avulla tutkitaan kaukolämpöverkon siirtokykyä nykyisissä ja tulevaisuuden kuormitustilanteissa. Työn yhteydessä laaditaan kaukolämmityksen kasvuennuste seuraavalle kymmenelle vuodelle ja selvitetään mitoituslämpötilaa -29°C vastaava teho tilastollisen analyysin avulla. Lisäksi tutkitaan mahdollisia ratkaisuja huippu- ja varatehon tuottamiseksi. Tarkastelun kohteena on myös lämmön lyhytaikaisvarastoinnin kannattavuus energianhankintajärjestelmässä. Kaukolämpöverkon siirtokyky on tarkastelun perusteella kohtalaisen hyvä, mutta liittymistehojen kasvaessa paine-erot verkon häntäpäässä jäävät liian alhaisiksi. Paras ratkaisu paine-ero ongelmaan on rakentaa välipumppaamo Hovioikeudenpuistoon. Tarkastelun perusteella kaukolämmön varatehon lisätarve on kymmenen vuoden kuluttua noin 40 MW ja varatehoksi on kannattavinta rakentaa raskasta polttoöljyä käyttävä lämpökeskus. Lämmön lyhytaikaisvarastointi on nykyisillä energianhinnoilla kohtalaisen kannattavaa varsinkin, jos Kauppa- ja teollisuusministeriö myöntää hankkeelle täyden 30%:n investointiavustuksen. The purpose of this thesis is to examine the effects of future prospects on district heating in the town of Vaasa. Using Komartek`s Flowra 32 network computation software application, the transfer capacity of the district heating network is studied in current and future load situations. A growth forecast for the next ten years is prepared in connection with this thesis and the power that corresponds to a dimensioning temperature of -29°C obtained using statistical analysis. In addition, possible solutions for generating peak and back-up power are examined. The economic viability of the short-term heat storage in the energy purchasing system is also focus of the study. On the basis of the analysis, the transfer capacity of the district heat network is rather good, although as the connection power increases, pressure differences at the end of the network remain too low. The best solution for the pressure difference problem is to construct a booster pumping station in Hovioikeudenpuisto. The analysis showed that after ten years, the need for back-up district heating energy will be 40 MW and the most economically viable way of providing back-up energy will be to build a heating centre that runs on heavy fuel oil. At current energy prices, the short-term heat storage is economically viable, especially if the Ministry of Trade and Industry grants the project 30% of its value in the form of investment support.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    LUTPub
    2002
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      LUTPub
      2002
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yurun Guo; Shugang Wang; Jihong Wang; Tengfei Zhang; +2 Authors

    In the background of the continued integration of renewable energy sources (RES) and the increasing flexibility on the demand side, the diversity and complexity of new technologies for heating present increased challenges for design and operation of district heating systems (DHS). This work first reviews the progress of the new generation of DHS, followed by providing an overview of investigations on building energy flexibility in the field of heating, with a focus on the characterization and quantification of energy flexibility, the realization of thermal flexibility, and the use of building thermal mass in demand side management (DSM). Different technologies were categorized and summarized according to the composition of the new generation of DHS. Control strategies such as model predictive control were also examined. In particular, the concept of building thermal battery is used to analyze buildings or prosumers thermal energy flexibility. Finally, new elements of DHS development and potential challenges were discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kuosa, Maunu; Aalto, Martin; El Haj Assad, M.; Mäkilä, Tapio; +3 Authors

    Abstract Plate heat exchangers (PHE) have consolidated their position as key components of modern heating processes. They are widely accepted as the most suitable design for heat transfer applications in various processes, including the field of energy-efficient district heating (DH). This study refers to new DH coupling and control applied to a consumer substation. The concept introduces a new mass flow control model optimising the primary and secondary water streams to achieve remarkably higher temperature cooling in a new low temperature programme with diminished pressure losses. Here the operation of the ring network and the mass flow control in the substation are studied theoretically. A calculation procedure and transient models were constructed for the DH network, building structures, and heating heat exchangers. The PHE and its operation in the substation were studied by means of a corrugated plate model with five vertical parts and 10 elements. Variations in the flow rates, pressure losses, and overall heat transfer coefficients were received for the selected days. As a result almost equal heat capacity flows were found between the hot and cold sides of the PHE with maximum temperature cooling. The key performance factors of the heat exchanger, NTU and effectiveness, were monitored and the mean values obtained were 9.2 and 0.9, respectively.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014
    Data sources: VIRTA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014
    Data sources: VIRTA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014
    Data sources: VIRTA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014
      Data sources: VIRTA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014
      Data sources: VIRTA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014
      Data sources: VIRTA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hilal Bahlawan; Niccolo Ferraro; Agostino Gambarotta; Enzo Losi; +5 Authors

    District Heating Networks (DHNs) are composed of numerous pipes that can be threatened by faults that affect DHN operation and management. Thus, reliable diagnostic methodologies are essential to identify DHN health state and hinder DHN malfunctioning and performance deterioration. To this purpose, a novel diagnostic approach that couples a DHN simulation model with an optimization algorithm for detecting and identifying both thermal and hydraulic faults, i.e., water leakages, anomalous heat and pressure losses, is presented in this paper. In the current paper, the novel diagnostic approach is challenged at evaluating the health state of the DHN of the campus of the University of Parma, where different faults are artificially implanted, by using a digital twin of the DHN. The faulty datasets account for both single and multiple faults, as well as different fault types and causes. The novel diagnostic approach proves to correctly detect and identify all simulated faults, by also correctly estimating their magnitude even in the most challenging scenarios.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ahonen, Markku; Xu, Mingzhe; Virtanen; Markku;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VIRTA
    Report . 1992
    Data sources: VIRTA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VIRTA
      Report . 1992
      Data sources: VIRTA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
19 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sevastjanoff, Jani;

    Työssä on esitetty pääpiirteissään Joutsenon Energia Oy:n kaukolämpöjärjestelmä lämpökeskuksineen ja kaukolämpöverkkoineen sekä toimintaa ohjaava lainsäädäntö. Kunnossapitoa on käsitelty ensin teoreettisesti yleisellä tasolla, keskittyen kunnossapitostrategioihin ja niiden valintaan, kunnossapitotiedon hallintaan sekä kunnossapidon organisointiin. Työn puitteissa otettiin käyttöön myös Komartekin kaukolämmön kunnossapito-ohjelma Lämpökunto sekä graafinen informaatiojärjestelmä MAP, johon mallinnettiin mm. Joutsenon kaukolämpöverkkojen johdot ja kaivot. Tutkimustuloksina on esitelty mahdollisuuksia tehostaa kaukolämpöverkkojen ja –keskusten kunnossapitoa ja käyttää Lämpökuntoa tässä apuvälineenä. Kaukolämpöverkoille tehtiin perusparannustarpeen kartoitus sekä keskustaajaman kaukolämpöverkon uusimiselle aikatauluehdotus. Lämpökeskuksia tarkasteltiin niiden energiataloudellisuuden ja käyttöluotettavuuden kannalta ja pyrittiin löytämään keinoja näiden tekijöiden parantamiseksi. The thesis was made for a municipal corporation, Joutsenon Energia Oy, which pro-vides its customers with electricity, district heat and natural gas. To begin with, the district heating system including the district heating centres and networks, as well as the binding legislation, are described in the work. Secondly, the general maintenance theory is presented. The main aspects covered in the section include the basic strategies, data systems and organising of maintenance. Subsequently, the maintaining of the district heating centres and networks is examined. The district heating centres are considered mainly in order to define their energy efficiency and reliability and also to discover potential to improve operations. Networks are studied in order to recognise the needs for fundamental improvement and if needed, the timetable for improvement is presented. In addition to all this, a maintenance software with a graphic interface was installed and adopted including the modelling of the district heating networks.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    LUTPub
    2003
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      LUTPub
      2003
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Laukkanen, Pasi;

    Diplomityössä kehitetään Savonlinnan kaupungin kaukolämmöntuotantoa ja kaukolämpöverkon käyttöä muuttuneessa ajotilanteessa. Muuttunut tilanne syntyy, kun Savonlinnaan rakennetaan uusi lämmitysvoimalaitos. Kaukolämpöverkkoa yhdistetään samanaikaisesti viidestä erillisestä verkosta yhdeksi kokonaiseksi verkoksi. Kaukolämmöntuotannon ja verkon käytön optimointi suoritettiin Process Vision Oy: n kehittämällä kaukolämpöverkon laskentaohjelmalla. Optimoinnissa pyrittiin saamaan mahdollisimman aikaisin taloudellisin laitos eli uusi hakelaitos täyteen tehoon ja tarvittava lisäteho otettiin öljylämpökeskuksista. Hakelaitoksen käytettävyyttä lisättiin rakentamalla kaukolämpöverkkoon välipumppaamo ja kaukolämpöveden apujäähdytin. Hakelaitosta voidaan käyttää 0°C ulkolämpötilaan asti, mutta kun käytetään apuna välipumppausta voidaan pumppauksellisesti pelkästään hakelaitokselta syöttää tehoa aina 14 °C lämpötilaan asti. Välipumppauksen avulla vuosittain vähennetään öljyn ja lisätään hakkeen polttoa n. 10,4 GWh. Nykyisillä öljyn ja hakkeen hinnoilla säästö vuodessa on n. 887000 mk. Välipumppauksella vähennetään lisäksi kaukolämpöverkon pumppauskustannuksia. The aim of this work was to optimize the production and delivery of district heating in Savonlinna town. The production of district heating changes, when new heating and power plant will be built and district heating network will be adjointed from five to one. Optimization was made by computer program Lämpö Nexus, producted by Process Vision Oy. In the optimization the use of new chip power plant will be maximized and the rest of the demanded power will be produced by oil heating plants. The availability of chip power plant will be added by pumping the district heat water and by using auxliary cooling system in district heat network. The chip power plant can be used to 0 °C outdoor temperature, but by pumping district heat water in network the heat production can be accomplished as far as 14 °C outdoor temperature. Then the use of oil will be decreased and use of chips will be increased about 10,4 GWh every year. The save with today's oil and chip charges will be about 887000 mk every year. Pumping costs will also be decreased by pumping the district heat water in network.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    LUTPub
    2000
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      LUTPub
      2000
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Dans la continuité du projet de semestre 5 « Simulation et optimisation SIG du réseau CAD de Broc », il a été mis en évidence la nécessité d’optimiser la prise de mesures aux sous-stations ainsi qu’à la centrale de chauffe de Broc. Malheureusement, après avoir analysé les relevés de mesures aux sous-stations en conditions réelles, il s’est avéré que les valeurs ne peuvent pas être exploitées en vue de valider le Solver Eguzki. C’est pourquoi des mesures ont été prélevées directement sur les écrans des automates à une des sous-stations du réseau de chaleur à distance. Il faut savoir que les sous-stations composant le réseau CAD sont dépourvues d’instruments permettant de relever des mesures de pression. Il s’est avéré judicieux d’installer des sondes de pression à la sous-station précédemment citée en vue de valider les pertes de charge au niveau de l’échangeur et de la vanne 2 voies dépendant notamment du débit et du coefficient kvs. Après avoir valider le Solver Eguzki en effectuant diverses simulations se basant notamment sur les mesures susmentionnées, il a été possible de définir que l’algorithme pouvait atteindre une précision de ±12.8%. Ensuite, il a été question de chiffrer les gains économiques et énergétiques qui pouvaient être réalisés en exploitant le Solver Eguzki. En se basant sur des puissances horaires simulées et obtenues grâce au logiciel CitySim, diverses simulations ont été effectuées avec Eguzki. A l’aide de celles-ci, il a été possible de déterminer la nouvelle courbe MCR des pompes et de la comparer à celle actuellement exploitée à la centrale de chauffe de Broc. Les différents points de fonctionnement obtenus par simulation et l’équivalence pour le modèle de régulation actuel ont été insérés sur le site du fournisseur des pompes afin de déterminer la puissance électrique nette demandée par les pompes. Cette première optimisation a permis de définir que la courbe de régulation actuelle n’est pas adaptée et que les coûts électriques annuels peuvent être diminuer d’au moins 77.0% en utilisant la courbe MCR des pompes déterminée à l’aide du Solver Eguzki. Dans une deuxième phase, une optimisation dimensionnelle a été effectuée en se basant sur le jour type le plus critique déterminé sur la base des puissances horaires simulées avec CitySim. A partir de simulations effectuées avec Eguzki, les diamètres des conduites constituant le réseau CAD ont pu être modifiés en vue d’atteindre un équilibre optimisé entre les déperditions thermiques dans le sol et les pertes de charge que doivent remonter les pompes à la centrale de chauffe.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Thesis . 2019
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Thesis . 2019
    Data sources: Datacite
    ZENODO
    Other literature type . 2019
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility58
    visibilityviews58
    downloaddownloads23
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Thesis . 2019
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Thesis . 2019
      Data sources: Datacite
      ZENODO
      Other literature type . 2019
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ikäheimo, Jussi; Forsström, Juha; Shemeikka, Jari; Klobut, Krzysztof; +4 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VIRTA
    Report . 2005
    Data sources: VIRTA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VIRTA
      Report . 2005
      Data sources: VIRTA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Uitti, Jani;

    Tässä diplomityössä on tarkasteltu Oulun Energian kaukolämpötoiminnan kehitystä lähitulevaisuudessa. Työn yhteydessä selvitettiin nykyisessä tilanteessa mitoituslämpötilaa -32 oC vastaava tehotilastollisen analyysin avulla ja laadittiin kasvuennuste kaukolämmityksen tehontarpeesta seuraavalle viidelletoista vuodelle. Kasvuennusteen perusteella on tehty tarkastelu kaukolämmön varatehon riittävyydestä. Verkoston tehonsiirtokykyä nykyisissä ja tulevaisuuden kuormitustilanteissa on tarkasteltu Process VisioninGrades Heating -verkostolaskentaohjelmiston avulla. Tarkastelun perusteella kaukolämpöverkoston siirtokyky on kohtalaisen hyvä. Verkoston ongelmakohtia ovat länsi-itäsuunnassa olevat siirtolinjat. Varatehon määrä tulee laskemaan lähivuosina alle suositeltavan määrän, mikäli uutta lämmöntuotantokapasiteettia ei rakenneta. Alkuvaiheessa paras ratkaisu tilanteen korjaamiseksi olisi uusien lämpökeskusten rakentaminen sekä kaupungin etelä- että itä-osiin. 2010-luvulla tarve uuden voimalaitoksen rakentamiselle kaukolämpötehon tarpeen kattamiseksi tulee kasvamaan. This thesis studies the development of Oulun Energia's district heating network and the production of district heating in the near future. The demand of the district heating power in dimensioning temperature of -32 oC was obtained using statistical analysis. Furthermore, a growth forecast of the district heating power demand for the next fifteen years was prepared. Part of the thesis was to examine the adequacy ofthe reserve heating power capacity in the near future. This was done on the basis of the growth forecast of the district heating power. The transfer capacity of the district heating network was studied in current and future load situationsusing Process Vision's Grades Heating network computation software application. Based on the analysis, the transfer capacity of the districtheating network is rather good. The problematic transfer pipelines are the onesthat run from west to east. The amount of reserve district heating power will drop under the common recommendation, if new capacity is not going to be built. At the beginning the best solution is to build new heating centres to the south and the east regions of the city. On the next decade the demand for a new power plant to satisfy the need of district heating power will grow.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    LUTPub
    2006
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      LUTPub
      2006
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ronkainen, Sami;

    Tämän työn tarkoituksena on tarkastella tulevaisuuden kehitysnäkymien vaikutusta Vaasan kaukolämpötoimintaan. Komartekin Flowra 32 verkostolaskentaohjelman avulla tutkitaan kaukolämpöverkon siirtokykyä nykyisissä ja tulevaisuuden kuormitustilanteissa. Työn yhteydessä laaditaan kaukolämmityksen kasvuennuste seuraavalle kymmenelle vuodelle ja selvitetään mitoituslämpötilaa -29°C vastaava teho tilastollisen analyysin avulla. Lisäksi tutkitaan mahdollisia ratkaisuja huippu- ja varatehon tuottamiseksi. Tarkastelun kohteena on myös lämmön lyhytaikaisvarastoinnin kannattavuus energianhankintajärjestelmässä. Kaukolämpöverkon siirtokyky on tarkastelun perusteella kohtalaisen hyvä, mutta liittymistehojen kasvaessa paine-erot verkon häntäpäässä jäävät liian alhaisiksi. Paras ratkaisu paine-ero ongelmaan on rakentaa välipumppaamo Hovioikeudenpuistoon. Tarkastelun perusteella kaukolämmön varatehon lisätarve on kymmenen vuoden kuluttua noin 40 MW ja varatehoksi on kannattavinta rakentaa raskasta polttoöljyä käyttävä lämpökeskus. Lämmön lyhytaikaisvarastointi on nykyisillä energianhinnoilla kohtalaisen kannattavaa varsinkin, jos Kauppa- ja teollisuusministeriö myöntää hankkeelle täyden 30%:n investointiavustuksen. The purpose of this thesis is to examine the effects of future prospects on district heating in the town of Vaasa. Using Komartek`s Flowra 32 network computation software application, the transfer capacity of the district heating network is studied in current and future load situations. A growth forecast for the next ten years is prepared in connection with this thesis and the power that corresponds to a dimensioning temperature of -29°C obtained using statistical analysis. In addition, possible solutions for generating peak and back-up power are examined. The economic viability of the short-term heat storage in the energy purchasing system is also focus of the study. On the basis of the analysis, the transfer capacity of the district heat network is rather good, although as the connection power increases, pressure differences at the end of the network remain too low. The best solution for the pressure difference problem is to construct a booster pumping station in Hovioikeudenpuisto. The analysis showed that after ten years, the need for back-up district heating energy will be 40 MW and the most economically viable way of providing back-up energy will be to build a heating centre that runs on heavy fuel oil. At current energy prices, the short-term heat storage is economically viable, especially if the Ministry of Trade and Industry grants the project 30% of its value in the form of investment support.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    LUTPub
    2002
    Data sources: LUTPub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LUTPubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      LUTPub
      2002
      Data sources: LUTPub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yurun Guo; Shugang Wang; Jihong Wang; Tengfei Zhang; +2 Authors

    In the background of the continued integration of renewable energy sources (RES) and the increasing flexibility on the demand side, the diversity and complexity of new technologies for heating present increased challenges for design and operation of district heating systems (DHS). This work first reviews the progress of the new generation of DHS, followed by providing an overview of investigations on building energy flexibility in the field of heating, with a focus on the characterization and quantification of energy flexibility, the realization of thermal flexibility, and the use of building thermal mass in demand side management (DSM). Different technologies were categorized and summarized according to the composition of the new generation of DHS. Control strategies such as model predictive control were also examined. In particular, the concept of building thermal battery is used to analyze buildings or prosumers thermal energy flexibility. Finally, new elements of DHS development and potential challenges were discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kuosa, Maunu; Aalto, Martin; El Haj Assad, M.; Mäkilä, Tapio; +3 Authors

    Abstract Plate heat exchangers (PHE) have consolidated their position as key components of modern heating processes. They are widely accepted as the most suitable design for heat transfer applications in various processes, including the field of energy-efficient district heating (DH). This study refers to new DH coupling and control applied to a consumer substation. The concept introduces a new mass flow control model optimising the primary and secondary water streams to achieve remarkably higher temperature cooling in a new low temperature programme with diminished pressure losses. Here the operation of the ring network and the mass flow control in the substation are studied theoretically. A calculation procedure and transient models were constructed for the DH network, building structures, and heating heat exchangers. The PHE and its operation in the substation were studied by means of a corrugated plate model with five vertical parts and 10 elements. Variations in the flow rates, pressure losses, and overall heat transfer coefficients were received for the selected days. As a result almost equal heat capacity flows were found between the hot and cold sides of the PHE with maximum temperature cooling. The key performance factors of the heat exchanger, NTU and effectiveness, were monitored and the mean values obtained were 9.2 and 0.9, respectively.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014
    Data sources: VIRTA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014
    Data sources: VIRTA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014
    Data sources: VIRTA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014
      Data sources: VIRTA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014
      Data sources: VIRTA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014
      Data sources: VIRTA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hilal Bahlawan; Niccolo Ferraro; Agostino Gambarotta; Enzo Losi; +5 Authors

    District Heating Networks (DHNs) are composed of numerous pipes that can be threatened by faults that affect DHN operation and management. Thus, reliable diagnostic methodologies are essential to identify DHN health state and hinder DHN malfunctioning and performance deterioration. To this purpose, a novel diagnostic approach that couples a DHN simulation model with an optimization algorithm for detecting and identifying both thermal and hydraulic faults, i.e., water leakages, anomalous heat and pressure losses, is presented in this paper. In the current paper, the novel diagnostic approach is challenged at evaluating the health state of the DHN of the campus of the University of Parma, where different faults are artificially implanted, by using a digital twin of the DHN. The faulty datasets account for both single and multiple faults, as well as different fault types and causes. The novel diagnostic approach proves to correctly detect and identify all simulated faults, by also correctly estimating their magnitude even in the most challenging scenarios.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ahonen, Markku; Xu, Mingzhe; Virtanen; Markku;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VIRTA
    Report . 1992
    Data sources: VIRTA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VIRTA
      Report . 1992
      Data sources: VIRTA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.