- home
- Advanced Search
- Energy Research
- Romanian
- Energy Research
- Romanian
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Zenodo Authors: Ermuraki Iu.; Berzan V.;A new architecture of the inverter used in the convertion of electric energy generated by renewable energy sources is studied in this paper. The distinctive features of this inverter is the special block which compensates pulsing of the current with double frequency, characteristic for these inverters. The switching of electronic keys is realized using the method TCM In this block, like in the inverter, which assures the switching at the voltages near to zero (ZVC). The proposed algorithm of controlling the electronic keys permits to increase the work frequency up to hundreds of kHz. Electronic keys operate at variable frequency, which changes during the work cycle both slowly and by jump. The assurance of admissible heat regime is performed using forced cooling air flux and by convection. The increase of releasing process of the heat is assured by original construction of radiators which forms the turbulent mode of cooling air flux. These changes of the architecture of the inverter have allowed the minimization of mass, sizes and price indicators. It has been manufactured a functional laboratory sample with output power of 2kW the voltage of direct current of 450V or 48 V and output alternating voltage of 230V, with sizes 175mmX35mmX30mm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1208390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 37visibility views 37 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1208390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Zenodo Authors: Ermuraki Iu.; Berzan V.;A new architecture of the inverter used in the convertion of electric energy generated by renewable energy sources is studied in this paper. The distinctive features of this inverter is the special block which compensates pulsing of the current with double frequency, characteristic for these inverters. The switching of electronic keys is realized using the method TCM In this block, like in the inverter, which assures the switching at the voltages near to zero (ZVC). The proposed algorithm of controlling the electronic keys permits to increase the work frequency up to hundreds of kHz. Electronic keys operate at variable frequency, which changes during the work cycle both slowly and by jump. The assurance of admissible heat regime is performed using forced cooling air flux and by convection. The increase of releasing process of the heat is assured by original construction of radiators which forms the turbulent mode of cooling air flux. These changes of the architecture of the inverter have allowed the minimization of mass, sizes and price indicators. It has been manufactured a functional laboratory sample with output power of 2kW the voltage of direct current of 450V or 48 V and output alternating voltage of 230V, with sizes 175mmX35mmX30mm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1208390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 37visibility views 37 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1208390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu