- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Report United StatesPublisher:Oregon Wave Energy Trust Authors: Geo-Marine, Inc.;Geo-Marine, Inc. (GMI) conducted an offshore avian radar baseline study for Oregon Wave Energy Trust (OWET) for a wave energy study located northwest of Reedsport, Oregon from 25 August through 29 October 2010. The study was conducted from shore with GMI’s Mobile Avian Radar System (MARS®). The MARS® was equipped with a 3-centimeter (cm) wavelength 50-kilowatt (kW) radar with a 2.5-degree (°) parabolic antenna for horizontal scanning, and a 3-cm, 25-kW radar with an open array antenna for vertical scanning. Diurnal land-based nearshore and diurnal and nocturnal boat-based radar validation surveys were conducted specifically to determine whether the radar could detect birds flying at low attitudes above the water. Comparison between the nearshore and offshore (study area) observer bird passage rates and the nearshore and offshore radar passage rates revealed low correlation between diurnal observations and radar data. The correlation analysis values were all too low (<.307) to develop a correction factor to apply to the radar data. Sea clutter was identified as the limiting factor. When algorithms to reduce false tracks from sea clutter were applied, tracks of real birds were eliminated because they could not be separated from sea clutter false tracks. At present there is no technology known that can accurately remove bird detections from sea clutter. This problem was further magnified in this study because radar visual validation surveys revealed that a major portion of the bird movement both nearshore and offshore occurred at altitudes from 1-30 feet (ft) above sea level. At that altitude it is impossible to separate birds from wind-driven waves and high swells that are common in the study area during fall. The visual validation data documented that the radar was ineffective when birds were flying close to the surface. In addition to providing data to facilitate passage rate comparisons between observer and the radar, the radar validation surveys provided data on bird flight behaviors within and adjacent to ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::bc129565af718a78f49baf2a24272ba2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::bc129565af718a78f49baf2a24272ba2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2014 DenmarkAuthors: Watts, Laura; Kerr, Sandy;To date, academic research relating to Marine Renewable Energy (MRE) has largely focused on resource assessment, technical viability and environmental impact. Experiences from onshore renewable energy tell us that social acceptability is equally critical to project success. However, the specific nature of the marine environment, patterns of resource distribution and governance means experiences from onshore may not be directly applicable to MRE and the marine environment. This paper sets out an agenda for social studies research linked to MRE, identifying key topics for future research: (i) economic impacts; (ii) wealth distribution and community benefits; (iii) communication and knowledge flow; (iv) consultation processes; (v) dealing with uncertainty; (vi) public attitudes; and (vii) planning processes. This agenda is based on the findings of the first workshop of ISSMER, an international research network of social scientists with interests in marine renewable energy. Importantly, this research agenda has been informed by the experiences of developers, regulators and community groups in Orkney. The Orkney archipelago, off the north coast of Scotland, is home to the most intense cluster of MRE research, development and deployment activity in the world today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::48b86c40b2cb48a973c483d7594e280b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::48b86c40b2cb48a973c483d7594e280b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:SEANOE Authors: The European Marine Energy Centre;doi: 10.17882/77343
Datawell Waverider data collected at southern part of full-scale wave test site at EMEC, in year 2017. Data was processed using Datawell W@ves21 software, no QC had been applied
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/77343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/77343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2017 United StatesAuthors: Beaver, Ezra;handle: 1773/40924
Thesis (Master's)--University of Washington, 2017-09 ; Instream tidal energy is a form of renewable energy that is at an early stage of development compared to other forms of energy generation. A comparative multiple-case study was conducted to evaluate stakeholder group perceived concerns and benefits about the siting of commercial instream tidal energy projects. Based on their history of experience with instream tidal energy and their dissimilarity of population and grid connectivity Puget Sound, Washington State and Igiugig, Alaska were chosen. Interviews were conducted with key stakeholders in both locations to understand perceptions of project development. Perceived concerns and benefits were ranked; interviews were transcribed and coded to extract themes about project development. Providing local renewable energy, advancing science and technology, and environmental awareness were some of the top perceived benefits of the technology, while negative environmental impacts, conflicts with other uses, and unintended consequences were some of the top perceived concerns of the technology. The two locations varied in the type, number, and complexities of stakeholders involved in project development. Support or opposition about a project was justified by promoting the wellbeing of the affected stakeholders. There was overall more support in smaller communities isolated from municipal power sources, that had a demonstrated need for energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1773/40924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1773/40924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2017 SwedenPublisher:Uppsala universitet, Elektricitetslära Giassi, Marianna; Göteman, Malin; Thomas, Simon; Engström, Jens; Eriksson, Mikael; Isberg, Jan;Publikationer från U... arrow_drop_down Publikationer från Uppsala UniversitetConference object . 2017Data sources: Publikationer från Uppsala Universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::71d42f02d8cf3f32f102b7f5faf7411c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationer från U... arrow_drop_down Publikationer från Uppsala UniversitetConference object . 2017Data sources: Publikationer från Uppsala Universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::71d42f02d8cf3f32f102b7f5faf7411c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Masters, Ian; Esmaeili, Ali; Evans, Iestyn; George, Deepak; Glasby, David; Horrillo-Caraballo, Jose M; Lake, Thomas; Morgan, Dawn; Togneri, Michael; Williams, Alison;Operational data collected during tests of the Remote River Energy System (RRES) device previously described in 10.1680/jener.21.00101 with data made available at 10.5281/zenodo.8082024 This was the first tidal energy test carried out at the new Marine Energy Test Area in Pembrokeshire, Wales, UK, achieving Technology Readiness Level 5. Data consists of snapshots from the onboard OpenPLC based control system, with channels described in the included PDF file. Files are named by date and run number - YYYYMMDD-RR.csv.gz This work was supported by the MEECE project funded by the European Regional Development Fund and the UK \& Welsh governments through the Swansea Bay City Deal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14449551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14449551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2024Publisher:Zenodo Authors: Potter, Julieanna; Colby, Jonathan;A report summarizing permitting and regulatory information presented to the Cook Inlet Tidal Energy Working Group and providing author recommendations of paths forward to support development of the tidal energy resource in Cook Inlet specifically, and renewable resources in Alaska generally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13333150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13333150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book 2010 DenmarkPublisher:European Commission Kofoed, Jens Peter; Pecher, Arthur; Margheritini, Lucia; Holmes, B.; McCombes, T.; Johnstone, C.; Bittencourt, C.; Retzler, C.; Meyers, L. E.;The Sea Trial Manual (D4.1) describes the type of operations required to advance an ocean energy conversion device (wave and tide) from an intermediate scaled sub-systems proving machine (circa 1:4) to a full size solo prototype pre-production unit and on towards a pre-commercial device ready for economic evaluation in a small array deployment. This progression covers development Stages 3 to 4 in the 5 Stage development programme on which the EquiMar technical protocols are based. This report aims at providing a methodology for the analysis and presentation of data obtained from sea trials of marine energy converters, according to Annex 1 – Description of Work of the EquiMar project, where task 4.2 is defined. Some slight modifications have been made to the original structure due to re-adjustments in accordance with the on-going research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1266::cf1b3d93af12205d2a00e40a4b45059e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1266::cf1b3d93af12205d2a00e40a4b45059e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2023Publisher:Zenodo Masters, Ian; Evans, Iestyn; George, Deepak; Glasby, David; Horillo-Caraballo, Jose M.; Lake, Thomas; Togneri, Michael; Williams, Alison J.;The RRES (Remote River Energy System), is an energy converting device that is intended for use in fast flowing rivers for a small amount of electrical energy supply to remote communities. The design comprises a floating platform with a turbine suspended underneath, coupled with a closed loop water pump system and hydro-electric generator. The information published as part of this release includes engineering drawings and documentation detailing the design and operation of the device. This work was supported by the MEECE project funded by the European Regional Development Fund and the UK & Welsh governments through the Swansea Bay City Deal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8082024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8082024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:University of New Hampshire Scholars' Repository Authors: Charest, Alexander Raymond; Camobreco, Joeseph Daniel; Sweet, Tori; Williams, Sam; +5 AuthorsCharest, Alexander Raymond; Camobreco, Joeseph Daniel; Sweet, Tori; Williams, Sam; LePage, Andrew; Sack, Devan; Wiggin, Meagan; Kimball, Chelsea; Reagan, Brendan;Part of the Marine Energy Collegiate Competition (MECC) is the optional Build and Test Challenge where teams are encouraged to build a portion of their proposed solution. After the conducted testing the laboratory results are compared to the simulated and calculated models. For the MECC the University of New Hampshire (UNH) team decided to use a wave energy converter to produce pressurized water. The pressurized water would be filtered through a reverse osmosis membrane to make it potable. Our system uses the power of the ocean waves to move a float up and down in heave motion. This motion drives a piston in a piston chamber. The piston and piston chamber are two separate buoys that work together to create the pressurized water. The relative motion between the piston float and the piston chamber float creates pressurized water for the reverse osmosis membrane. Our team decided to reproduce our system at a 1/8 scale and test it in the UNH wave tank in the Jere A. Chase Ocean Engineering Lab. The UNH wave tank can produce waves at specific periods and wave heights which allows testing of the device at scaled down wave heights and periods using Froude scaling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::94b053f973705685926e4586749f9d4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::94b053f973705685926e4586749f9d4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Report United StatesPublisher:Oregon Wave Energy Trust Authors: Geo-Marine, Inc.;Geo-Marine, Inc. (GMI) conducted an offshore avian radar baseline study for Oregon Wave Energy Trust (OWET) for a wave energy study located northwest of Reedsport, Oregon from 25 August through 29 October 2010. The study was conducted from shore with GMI’s Mobile Avian Radar System (MARS®). The MARS® was equipped with a 3-centimeter (cm) wavelength 50-kilowatt (kW) radar with a 2.5-degree (°) parabolic antenna for horizontal scanning, and a 3-cm, 25-kW radar with an open array antenna for vertical scanning. Diurnal land-based nearshore and diurnal and nocturnal boat-based radar validation surveys were conducted specifically to determine whether the radar could detect birds flying at low attitudes above the water. Comparison between the nearshore and offshore (study area) observer bird passage rates and the nearshore and offshore radar passage rates revealed low correlation between diurnal observations and radar data. The correlation analysis values were all too low (<.307) to develop a correction factor to apply to the radar data. Sea clutter was identified as the limiting factor. When algorithms to reduce false tracks from sea clutter were applied, tracks of real birds were eliminated because they could not be separated from sea clutter false tracks. At present there is no technology known that can accurately remove bird detections from sea clutter. This problem was further magnified in this study because radar visual validation surveys revealed that a major portion of the bird movement both nearshore and offshore occurred at altitudes from 1-30 feet (ft) above sea level. At that altitude it is impossible to separate birds from wind-driven waves and high swells that are common in the study area during fall. The visual validation data documented that the radar was ineffective when birds were flying close to the surface. In addition to providing data to facilitate passage rate comparisons between observer and the radar, the radar validation surveys provided data on bird flight behaviors within and adjacent to ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::bc129565af718a78f49baf2a24272ba2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::bc129565af718a78f49baf2a24272ba2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2014 DenmarkAuthors: Watts, Laura; Kerr, Sandy;To date, academic research relating to Marine Renewable Energy (MRE) has largely focused on resource assessment, technical viability and environmental impact. Experiences from onshore renewable energy tell us that social acceptability is equally critical to project success. However, the specific nature of the marine environment, patterns of resource distribution and governance means experiences from onshore may not be directly applicable to MRE and the marine environment. This paper sets out an agenda for social studies research linked to MRE, identifying key topics for future research: (i) economic impacts; (ii) wealth distribution and community benefits; (iii) communication and knowledge flow; (iv) consultation processes; (v) dealing with uncertainty; (vi) public attitudes; and (vii) planning processes. This agenda is based on the findings of the first workshop of ISSMER, an international research network of social scientists with interests in marine renewable energy. Importantly, this research agenda has been informed by the experiences of developers, regulators and community groups in Orkney. The Orkney archipelago, off the north coast of Scotland, is home to the most intense cluster of MRE research, development and deployment activity in the world today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::48b86c40b2cb48a973c483d7594e280b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::48b86c40b2cb48a973c483d7594e280b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:SEANOE Authors: The European Marine Energy Centre;doi: 10.17882/77343
Datawell Waverider data collected at southern part of full-scale wave test site at EMEC, in year 2017. Data was processed using Datawell W@ves21 software, no QC had been applied
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/77343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/77343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2017 United StatesAuthors: Beaver, Ezra;handle: 1773/40924
Thesis (Master's)--University of Washington, 2017-09 ; Instream tidal energy is a form of renewable energy that is at an early stage of development compared to other forms of energy generation. A comparative multiple-case study was conducted to evaluate stakeholder group perceived concerns and benefits about the siting of commercial instream tidal energy projects. Based on their history of experience with instream tidal energy and their dissimilarity of population and grid connectivity Puget Sound, Washington State and Igiugig, Alaska were chosen. Interviews were conducted with key stakeholders in both locations to understand perceptions of project development. Perceived concerns and benefits were ranked; interviews were transcribed and coded to extract themes about project development. Providing local renewable energy, advancing science and technology, and environmental awareness were some of the top perceived benefits of the technology, while negative environmental impacts, conflicts with other uses, and unintended consequences were some of the top perceived concerns of the technology. The two locations varied in the type, number, and complexities of stakeholders involved in project development. Support or opposition about a project was justified by promoting the wellbeing of the affected stakeholders. There was overall more support in smaller communities isolated from municipal power sources, that had a demonstrated need for energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1773/40924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1773/40924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2017 SwedenPublisher:Uppsala universitet, Elektricitetslära Giassi, Marianna; Göteman, Malin; Thomas, Simon; Engström, Jens; Eriksson, Mikael; Isberg, Jan;Publikationer från U... arrow_drop_down Publikationer från Uppsala UniversitetConference object . 2017Data sources: Publikationer från Uppsala Universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::71d42f02d8cf3f32f102b7f5faf7411c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationer från U... arrow_drop_down Publikationer från Uppsala UniversitetConference object . 2017Data sources: Publikationer från Uppsala Universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::71d42f02d8cf3f32f102b7f5faf7411c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Masters, Ian; Esmaeili, Ali; Evans, Iestyn; George, Deepak; Glasby, David; Horrillo-Caraballo, Jose M; Lake, Thomas; Morgan, Dawn; Togneri, Michael; Williams, Alison;Operational data collected during tests of the Remote River Energy System (RRES) device previously described in 10.1680/jener.21.00101 with data made available at 10.5281/zenodo.8082024 This was the first tidal energy test carried out at the new Marine Energy Test Area in Pembrokeshire, Wales, UK, achieving Technology Readiness Level 5. Data consists of snapshots from the onboard OpenPLC based control system, with channels described in the included PDF file. Files are named by date and run number - YYYYMMDD-RR.csv.gz This work was supported by the MEECE project funded by the European Regional Development Fund and the UK \& Welsh governments through the Swansea Bay City Deal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14449551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14449551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2024Publisher:Zenodo Authors: Potter, Julieanna; Colby, Jonathan;A report summarizing permitting and regulatory information presented to the Cook Inlet Tidal Energy Working Group and providing author recommendations of paths forward to support development of the tidal energy resource in Cook Inlet specifically, and renewable resources in Alaska generally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13333150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13333150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book 2010 DenmarkPublisher:European Commission Kofoed, Jens Peter; Pecher, Arthur; Margheritini, Lucia; Holmes, B.; McCombes, T.; Johnstone, C.; Bittencourt, C.; Retzler, C.; Meyers, L. E.;The Sea Trial Manual (D4.1) describes the type of operations required to advance an ocean energy conversion device (wave and tide) from an intermediate scaled sub-systems proving machine (circa 1:4) to a full size solo prototype pre-production unit and on towards a pre-commercial device ready for economic evaluation in a small array deployment. This progression covers development Stages 3 to 4 in the 5 Stage development programme on which the EquiMar technical protocols are based. This report aims at providing a methodology for the analysis and presentation of data obtained from sea trials of marine energy converters, according to Annex 1 – Description of Work of the EquiMar project, where task 4.2 is defined. Some slight modifications have been made to the original structure due to re-adjustments in accordance with the on-going research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1266::cf1b3d93af12205d2a00e40a4b45059e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1266::cf1b3d93af12205d2a00e40a4b45059e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2023Publisher:Zenodo Masters, Ian; Evans, Iestyn; George, Deepak; Glasby, David; Horillo-Caraballo, Jose M.; Lake, Thomas; Togneri, Michael; Williams, Alison J.;The RRES (Remote River Energy System), is an energy converting device that is intended for use in fast flowing rivers for a small amount of electrical energy supply to remote communities. The design comprises a floating platform with a turbine suspended underneath, coupled with a closed loop water pump system and hydro-electric generator. The information published as part of this release includes engineering drawings and documentation detailing the design and operation of the device. This work was supported by the MEECE project funded by the European Regional Development Fund and the UK & Welsh governments through the Swansea Bay City Deal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8082024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8082024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:University of New Hampshire Scholars' Repository Authors: Charest, Alexander Raymond; Camobreco, Joeseph Daniel; Sweet, Tori; Williams, Sam; +5 AuthorsCharest, Alexander Raymond; Camobreco, Joeseph Daniel; Sweet, Tori; Williams, Sam; LePage, Andrew; Sack, Devan; Wiggin, Meagan; Kimball, Chelsea; Reagan, Brendan;Part of the Marine Energy Collegiate Competition (MECC) is the optional Build and Test Challenge where teams are encouraged to build a portion of their proposed solution. After the conducted testing the laboratory results are compared to the simulated and calculated models. For the MECC the University of New Hampshire (UNH) team decided to use a wave energy converter to produce pressurized water. The pressurized water would be filtered through a reverse osmosis membrane to make it potable. Our system uses the power of the ocean waves to move a float up and down in heave motion. This motion drives a piston in a piston chamber. The piston and piston chamber are two separate buoys that work together to create the pressurized water. The relative motion between the piston float and the piston chamber float creates pressurized water for the reverse osmosis membrane. Our team decided to reproduce our system at a 1/8 scale and test it in the UNH wave tank in the Jere A. Chase Ocean Engineering Lab. The UNH wave tank can produce waves at specific periods and wave heights which allows testing of the device at scaled down wave heights and periods using Froude scaling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::94b053f973705685926e4586749f9d4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::94b053f973705685926e4586749f9d4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu