- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Amirreza Delazar; Eric Hu; Andrei Kotousov;The performance of a conventional Ground-Source Refrigeration and Air Conditioning (GSRAC) system with a borehole heat exchanger (BHE) can be enhanced by addressing the soil thermal imbalance issue that affects these systems. This study proposes a novel concept for seasonal cold energy storage using a Thermal Diode Tank (TDT). The TDT consists of an insulated water tank fitted with an array of heat pipes. By integrating the TDT into a conventional GSRAC system, “cold” energy can be passively collected from ambient air during winter, injected into the BHE, and stored in the soil. The stored “cold” energy can then be retrieved in the summer, facilitating cross-seasonal cold energy storage (CS). Thus, a conventional GSRAC system can be transformed into a GSRAC system with cross-seasonal cold energy storage capability, i.e., GSRAC + CS system. The validated BHE model previously developed by the authors is used to predict the performance improvements achieved using the GSRAC + CS system. The results indicate that the Annual Net Cold Energy Storage Efficiency (ANESE) increased from 5.7% to 10.7% over a ten year period. The average Borehole Performance Improvement (BPI) due to the addition of cold storage capability is 11% over the same timeframe. This study also discusses the impacts of varying design and operational parameters on ANESE and BPI. The results demonstrate that GSRAC + CS systems not only mitigate the soil thermal imbalance issue faced by conventional GSRAC systems, but also require less BHE depth to achieve equivalent performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4625558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4625558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Amirreza Delazar; Eric Hu; Andrei Kotousov;The performance of a conventional Ground-Source Refrigeration and Air Conditioning (GSRAC) system with a borehole heat exchanger (BHE) can be enhanced by addressing the soil thermal imbalance issue that affects these systems. This study proposes a novel concept for seasonal cold energy storage using a Thermal Diode Tank (TDT). The TDT consists of an insulated water tank fitted with an array of heat pipes. By integrating the TDT into a conventional GSRAC system, “cold” energy can be passively collected from ambient air during winter, injected into the BHE, and stored in the soil. The stored “cold” energy can then be retrieved in the summer, facilitating cross-seasonal cold energy storage (CS). Thus, a conventional GSRAC system can be transformed into a GSRAC system with cross-seasonal cold energy storage capability, i.e., GSRAC + CS system. The validated BHE model previously developed by the authors is used to predict the performance improvements achieved using the GSRAC + CS system. The results indicate that the Annual Net Cold Energy Storage Efficiency (ANESE) increased from 5.7% to 10.7% over a ten year period. The average Borehole Performance Improvement (BPI) due to the addition of cold storage capability is 11% over the same timeframe. This study also discusses the impacts of varying design and operational parameters on ANESE and BPI. The results demonstrate that GSRAC + CS systems not only mitigate the soil thermal imbalance issue faced by conventional GSRAC systems, but also require less BHE depth to achieve equivalent performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4625558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4625558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | SWS-HEATINGEC| SWS-HEATINGAuthors: Tryfon C. Roumpedakis; Aris-Dimitrios Leontaritis; Prokopios Vlachogiannis; Efstratios Varvagiannis; +2 AuthorsTryfon C. Roumpedakis; Aris-Dimitrios Leontaritis; Prokopios Vlachogiannis; Efstratios Varvagiannis; Antonios Charalampidis; Sotirios Karellas;This study regards the evaluation of the performance of a thermally stratified tank as an intermediate combi-storage tank for a solar-driven residential thermal system coupled to a seasonal energy storage system. In such applications, the efficient operation of this intermediate tank is crucial to the enhanced exploitation of the harvested solar energy and the minimization of heat losses. In this perspective, the development of a dedicated model in TRNSYS software and its validation with experimental results are investigated. With respect to the simulation model’s discretization, it was found that beyond 60 nodes, the benefits to the model’s accuracy are almost negligible. Comparing the experimental data with the simulation’s results, the predicted temperature profile converges accurately to the measured values under steady-state conditions (threshold stabilization period of 1000 s after charging/discharging has occurred). However, the response of the model deviates considerably under transient conditions due to the lack of detailed inertia modeling of both the tank and the rest of the system components. Conclusively, the developed 1D simulation model is adequate for on- and off-design models where transient phenomena are of reduced importance, whereas for dynamic and semi-dynamic simulations, more detailed models are needed.
Thermo arrow_drop_down ThermoArticleLicense: CC BYFull-Text: https://www.mdpi.com/2673-7264/3/4/38/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/thermo3040038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Thermo arrow_drop_down ThermoArticleLicense: CC BYFull-Text: https://www.mdpi.com/2673-7264/3/4/38/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/thermo3040038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | SWS-HEATINGEC| SWS-HEATINGAuthors: Tryfon C. Roumpedakis; Aris-Dimitrios Leontaritis; Prokopios Vlachogiannis; Efstratios Varvagiannis; +2 AuthorsTryfon C. Roumpedakis; Aris-Dimitrios Leontaritis; Prokopios Vlachogiannis; Efstratios Varvagiannis; Antonios Charalampidis; Sotirios Karellas;This study regards the evaluation of the performance of a thermally stratified tank as an intermediate combi-storage tank for a solar-driven residential thermal system coupled to a seasonal energy storage system. In such applications, the efficient operation of this intermediate tank is crucial to the enhanced exploitation of the harvested solar energy and the minimization of heat losses. In this perspective, the development of a dedicated model in TRNSYS software and its validation with experimental results are investigated. With respect to the simulation model’s discretization, it was found that beyond 60 nodes, the benefits to the model’s accuracy are almost negligible. Comparing the experimental data with the simulation’s results, the predicted temperature profile converges accurately to the measured values under steady-state conditions (threshold stabilization period of 1000 s after charging/discharging has occurred). However, the response of the model deviates considerably under transient conditions due to the lack of detailed inertia modeling of both the tank and the rest of the system components. Conclusively, the developed 1D simulation model is adequate for on- and off-design models where transient phenomena are of reduced importance, whereas for dynamic and semi-dynamic simulations, more detailed models are needed.
Thermo arrow_drop_down ThermoArticleLicense: CC BYFull-Text: https://www.mdpi.com/2673-7264/3/4/38/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/thermo3040038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Thermo arrow_drop_down ThermoArticleLicense: CC BYFull-Text: https://www.mdpi.com/2673-7264/3/4/38/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/thermo3040038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2018 United StatesPublisher:Purdue University Authors: Byon, Yoo-Suk; Jeong, Jae-Weon;Seasonal Thermal Energy Storage (STES) is widely researched for having benefits in that it utilizes excess energy which would be wasted otherwise. The purpose of this study is to analyze energy efficiency of seasonal solar thermal energy system as heating system for greenhouses and compare it with conventional variable air volume (VAV) heating system. Greenhouse was chosen as a simulation model because it requires constant and stable heating through winter season to extend growing season and also because greenhouse can provide enough area to install solar collectors and heat storage tanks. The proposed seasonal solar thermal energy storage system consists of solar thermal collector, fully mixed heat storage tank, and VAV system. Energy simulation was conducted in two steps: heat storing in summer season, and heating in winter season. For greenhouses with area sizing 1600 m2, solar thermal collector of 1250 m2 and heat storage tank of 2000 m3 were designed. TRNSYS 17 and engineering equation solver (EES) were implemented for simulation and calculation of the systems thermal data. Simulation results showed the tank water temperature rising up to optimal temperature (95 oC) before heating season, and STES heating contributed to 55% of total heating load. Consequently, 30% of total heating cost was cut down showing energy efficiency of seasonal solar thermal energy storage system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a07f778b00551113a95836c391a1ed84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a07f778b00551113a95836c391a1ed84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2018 United StatesPublisher:Purdue University Authors: Byon, Yoo-Suk; Jeong, Jae-Weon;Seasonal Thermal Energy Storage (STES) is widely researched for having benefits in that it utilizes excess energy which would be wasted otherwise. The purpose of this study is to analyze energy efficiency of seasonal solar thermal energy system as heating system for greenhouses and compare it with conventional variable air volume (VAV) heating system. Greenhouse was chosen as a simulation model because it requires constant and stable heating through winter season to extend growing season and also because greenhouse can provide enough area to install solar collectors and heat storage tanks. The proposed seasonal solar thermal energy storage system consists of solar thermal collector, fully mixed heat storage tank, and VAV system. Energy simulation was conducted in two steps: heat storing in summer season, and heating in winter season. For greenhouses with area sizing 1600 m2, solar thermal collector of 1250 m2 and heat storage tank of 2000 m3 were designed. TRNSYS 17 and engineering equation solver (EES) were implemented for simulation and calculation of the systems thermal data. Simulation results showed the tank water temperature rising up to optimal temperature (95 oC) before heating season, and STES heating contributed to 55% of total heating load. Consequently, 30% of total heating cost was cut down showing energy efficiency of seasonal solar thermal energy storage system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a07f778b00551113a95836c391a1ed84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a07f778b00551113a95836c391a1ed84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2018 SwedenPublisher:Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap Authors: Fredriksson, Linda; Johansson, Julia;Sweden is only utilizing half of the available excess heat. To utilize more of the excess heat a seasonal thermal energy storage could be implemented to store excessed heat from the summer when the demand is lower to the winter when the demand is higher. This can be achieved by an integration of a seasonal thermal energy storage to the district heating system. A seasonal thermal energy storage may also reduce the need of the system’s peak load, which often is economically costly and adversely affect the environment. The purpose of the paper is to investigate the possibility for Skövde Värmeverk to implement a seasonal thermal storage. The paper is performed by a literature collection and calculations are made by software programs. The result shows that it is technically possible to implement a pit thermal energy storage and a borhole thermal energy storage, but no outcome shows a profitability within 20 years. A pit thermal energy storage can replace the system’s peak load up to 79 percent and a borhole thermal energy storage up to 2,8 percent. The most suitable case for Skövde Värmeverk is to install a pit thermal energy storage with a storage capacity of 4 GWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2a4db26f0c206ddcc5c1939f7b15771c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2a4db26f0c206ddcc5c1939f7b15771c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2018 SwedenPublisher:Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap Authors: Fredriksson, Linda; Johansson, Julia;Sweden is only utilizing half of the available excess heat. To utilize more of the excess heat a seasonal thermal energy storage could be implemented to store excessed heat from the summer when the demand is lower to the winter when the demand is higher. This can be achieved by an integration of a seasonal thermal energy storage to the district heating system. A seasonal thermal energy storage may also reduce the need of the system’s peak load, which often is economically costly and adversely affect the environment. The purpose of the paper is to investigate the possibility for Skövde Värmeverk to implement a seasonal thermal storage. The paper is performed by a literature collection and calculations are made by software programs. The result shows that it is technically possible to implement a pit thermal energy storage and a borhole thermal energy storage, but no outcome shows a profitability within 20 years. A pit thermal energy storage can replace the system’s peak load up to 79 percent and a borhole thermal energy storage up to 2,8 percent. The most suitable case for Skövde Värmeverk is to install a pit thermal energy storage with a storage capacity of 4 GWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2a4db26f0c206ddcc5c1939f7b15771c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2a4db26f0c206ddcc5c1939f7b15771c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type , Article 2017Publisher:Zenodo Funded by:EC | CHESS-SETUPEC| CHESS-SETUPAbad, Ferran; Grau, Marc; Pérez, Marcos; Wansdronk, Renee; Barley, Eleanor; Olatunji, Yomi; Hewitt, Neil;Sensible Heat Storage is the most common method of thermal energy storage, particularly in the form of hot water tanks. Essentially, sensible heat storage systems work by charging them with heat from a higher temperature source to raise the temperature of the thermal store, and by extracting heat to discharge them. On a larger scale, these sensible heat stores should be designed to store heat long term over seasons, which allow the thermal storage systems to be charged using solar thermal systems to then supply heat over colder periods and can be applied in an array of buildings, including individual dwellings and larger buildings. These seasonal storage systems consist of: Tank Thermal Energy Storage (TTES), Pit Thermal Energy Storage (PTES), Borehole Thermal Energy Storage (BTES) and Aquifer Thermal Energy Storage (ATES). The aim of this report is to provide useful information about the different construction techniques for the mentioned systems in addition to FP7 Einstein Project, where a big information research has already been done, analysing the main characteristics that interfere in the various proceedings. In addition, a general study for the three different CHESS-SETUP pilots is done regarding the availability and constraints of every case to introduce the different technologies. Finally, in order to ensure the correct operation of the installations, some guidance of the different types of maintenance is done as well as maintenance plans for the different elements of the system.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 15 Powered bymore_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type , Article 2017Publisher:Zenodo Funded by:EC | CHESS-SETUPEC| CHESS-SETUPAbad, Ferran; Grau, Marc; Pérez, Marcos; Wansdronk, Renee; Barley, Eleanor; Olatunji, Yomi; Hewitt, Neil;Sensible Heat Storage is the most common method of thermal energy storage, particularly in the form of hot water tanks. Essentially, sensible heat storage systems work by charging them with heat from a higher temperature source to raise the temperature of the thermal store, and by extracting heat to discharge them. On a larger scale, these sensible heat stores should be designed to store heat long term over seasons, which allow the thermal storage systems to be charged using solar thermal systems to then supply heat over colder periods and can be applied in an array of buildings, including individual dwellings and larger buildings. These seasonal storage systems consist of: Tank Thermal Energy Storage (TTES), Pit Thermal Energy Storage (PTES), Borehole Thermal Energy Storage (BTES) and Aquifer Thermal Energy Storage (ATES). The aim of this report is to provide useful information about the different construction techniques for the mentioned systems in addition to FP7 Einstein Project, where a big information research has already been done, analysing the main characteristics that interfere in the various proceedings. In addition, a general study for the three different CHESS-SETUP pilots is done regarding the availability and constraints of every case to introduce the different technologies. Finally, in order to ensure the correct operation of the installations, some guidance of the different types of maintenance is done as well as maintenance plans for the different elements of the system.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 15 Powered bymore_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 Spain Funded by:EC | SWS-HEATINGEC| SWS-HEATINGCrespo, Alicia; Gracia Cuesta, Alvaro de; Vérez, David; Cabeza, Luisa F.; Fernàndez Camon, César;handle: 10459.1/83962
This work is partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme. This project has received funding from the European Union´s Horizon 2020 research and innovation programme under the No 764025 (SWS-Heating). Alicia Crespo would also like to acknowledge the financial support of the FI-SDUR grant from the AGAUR of the Generalitat de Catalunya and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ea149c08384055d2c4b10ff132ff56b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ea149c08384055d2c4b10ff132ff56b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 Spain Funded by:EC | SWS-HEATINGEC| SWS-HEATINGCrespo, Alicia; Gracia Cuesta, Alvaro de; Vérez, David; Cabeza, Luisa F.; Fernàndez Camon, César;handle: 10459.1/83962
This work is partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme. This project has received funding from the European Union´s Horizon 2020 research and innovation programme under the No 764025 (SWS-Heating). Alicia Crespo would also like to acknowledge the financial support of the FI-SDUR grant from the AGAUR of the Generalitat de Catalunya and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ea149c08384055d2c4b10ff132ff56b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ea149c08384055d2c4b10ff132ff56b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1985 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Kannberg, L.D.;doi: 10.2172/5277873
Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5277873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5277873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1985 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Kannberg, L.D.;doi: 10.2172/5277873
Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5277873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5277873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2016 NetherlandsAuthors: Goorden, J.J.H. (author);Architecture and The Built Environment ; Architectural Engineering + Technology
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a37cd7d0164e2f7de6c671dc4a85cb2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a37cd7d0164e2f7de6c671dc4a85cb2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2016 NetherlandsAuthors: Goorden, J.J.H. (author);Architecture and The Built Environment ; Architectural Engineering + Technology
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a37cd7d0164e2f7de6c671dc4a85cb2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a37cd7d0164e2f7de6c671dc4a85cb2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 1995 United StatesPublisher:Pacific Northwest Laboratory Authors: Somasundaram, S.; Katipamula, S.; Williams, H.R.;The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ded7591fdc6813ae1bb8717c00513a53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ded7591fdc6813ae1bb8717c00513a53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 1995 United StatesPublisher:Pacific Northwest Laboratory Authors: Somasundaram, S.; Katipamula, S.; Williams, H.R.;The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ded7591fdc6813ae1bb8717c00513a53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ded7591fdc6813ae1bb8717c00513a53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2018Publisher:Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap Authors: Fredriksson, Linda; Johansson, Julia;Sweden is only utilizing half of the available excess heat. To utilize more of the excess heat a seasonal thermal energy storage could be implemented to store excessed heat from the summer when the demand is lower to the winter when the demand is higher. This can be achieved by an integration of a seasonal thermal energy storage to the district heating system. A seasonal thermal energy storage may also reduce the need of the system’s peak load, which often is economically costly and adversely affect the environment. The purpose of the paper is to investigate the possibility for Skövde Värmeverk to implement a seasonal thermal storage. The paper is performed by a literature collection and calculations are made by software programs. The result shows that it is technically possible to implement a pit thermal energy storage and a borhole thermal energy storage, but no outcome shows a profitability within 20 years. A pit thermal energy storage can replace the system’s peak load up to 79 percent and a borhole thermal energy storage up to 2,8 percent. The most suitable case for Skövde Värmeverk is to install a pit thermal energy storage with a storage capacity of 4 GWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::b7e3b1dfd2264af18d20462ebf2fb0a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::b7e3b1dfd2264af18d20462ebf2fb0a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2018Publisher:Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap Authors: Fredriksson, Linda; Johansson, Julia;Sweden is only utilizing half of the available excess heat. To utilize more of the excess heat a seasonal thermal energy storage could be implemented to store excessed heat from the summer when the demand is lower to the winter when the demand is higher. This can be achieved by an integration of a seasonal thermal energy storage to the district heating system. A seasonal thermal energy storage may also reduce the need of the system’s peak load, which often is economically costly and adversely affect the environment. The purpose of the paper is to investigate the possibility for Skövde Värmeverk to implement a seasonal thermal storage. The paper is performed by a literature collection and calculations are made by software programs. The result shows that it is technically possible to implement a pit thermal energy storage and a borhole thermal energy storage, but no outcome shows a profitability within 20 years. A pit thermal energy storage can replace the system’s peak load up to 79 percent and a borhole thermal energy storage up to 2,8 percent. The most suitable case for Skövde Värmeverk is to install a pit thermal energy storage with a storage capacity of 4 GWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::b7e3b1dfd2264af18d20462ebf2fb0a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::b7e3b1dfd2264af18d20462ebf2fb0a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Amirreza Delazar; Eric Hu; Andrei Kotousov;The performance of a conventional Ground-Source Refrigeration and Air Conditioning (GSRAC) system with a borehole heat exchanger (BHE) can be enhanced by addressing the soil thermal imbalance issue that affects these systems. This study proposes a novel concept for seasonal cold energy storage using a Thermal Diode Tank (TDT). The TDT consists of an insulated water tank fitted with an array of heat pipes. By integrating the TDT into a conventional GSRAC system, “cold” energy can be passively collected from ambient air during winter, injected into the BHE, and stored in the soil. The stored “cold” energy can then be retrieved in the summer, facilitating cross-seasonal cold energy storage (CS). Thus, a conventional GSRAC system can be transformed into a GSRAC system with cross-seasonal cold energy storage capability, i.e., GSRAC + CS system. The validated BHE model previously developed by the authors is used to predict the performance improvements achieved using the GSRAC + CS system. The results indicate that the Annual Net Cold Energy Storage Efficiency (ANESE) increased from 5.7% to 10.7% over a ten year period. The average Borehole Performance Improvement (BPI) due to the addition of cold storage capability is 11% over the same timeframe. This study also discusses the impacts of varying design and operational parameters on ANESE and BPI. The results demonstrate that GSRAC + CS systems not only mitigate the soil thermal imbalance issue faced by conventional GSRAC systems, but also require less BHE depth to achieve equivalent performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4625558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4625558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Amirreza Delazar; Eric Hu; Andrei Kotousov;The performance of a conventional Ground-Source Refrigeration and Air Conditioning (GSRAC) system with a borehole heat exchanger (BHE) can be enhanced by addressing the soil thermal imbalance issue that affects these systems. This study proposes a novel concept for seasonal cold energy storage using a Thermal Diode Tank (TDT). The TDT consists of an insulated water tank fitted with an array of heat pipes. By integrating the TDT into a conventional GSRAC system, “cold” energy can be passively collected from ambient air during winter, injected into the BHE, and stored in the soil. The stored “cold” energy can then be retrieved in the summer, facilitating cross-seasonal cold energy storage (CS). Thus, a conventional GSRAC system can be transformed into a GSRAC system with cross-seasonal cold energy storage capability, i.e., GSRAC + CS system. The validated BHE model previously developed by the authors is used to predict the performance improvements achieved using the GSRAC + CS system. The results indicate that the Annual Net Cold Energy Storage Efficiency (ANESE) increased from 5.7% to 10.7% over a ten year period. The average Borehole Performance Improvement (BPI) due to the addition of cold storage capability is 11% over the same timeframe. This study also discusses the impacts of varying design and operational parameters on ANESE and BPI. The results demonstrate that GSRAC + CS systems not only mitigate the soil thermal imbalance issue faced by conventional GSRAC systems, but also require less BHE depth to achieve equivalent performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4625558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4625558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | SWS-HEATINGEC| SWS-HEATINGAuthors: Tryfon C. Roumpedakis; Aris-Dimitrios Leontaritis; Prokopios Vlachogiannis; Efstratios Varvagiannis; +2 AuthorsTryfon C. Roumpedakis; Aris-Dimitrios Leontaritis; Prokopios Vlachogiannis; Efstratios Varvagiannis; Antonios Charalampidis; Sotirios Karellas;This study regards the evaluation of the performance of a thermally stratified tank as an intermediate combi-storage tank for a solar-driven residential thermal system coupled to a seasonal energy storage system. In such applications, the efficient operation of this intermediate tank is crucial to the enhanced exploitation of the harvested solar energy and the minimization of heat losses. In this perspective, the development of a dedicated model in TRNSYS software and its validation with experimental results are investigated. With respect to the simulation model’s discretization, it was found that beyond 60 nodes, the benefits to the model’s accuracy are almost negligible. Comparing the experimental data with the simulation’s results, the predicted temperature profile converges accurately to the measured values under steady-state conditions (threshold stabilization period of 1000 s after charging/discharging has occurred). However, the response of the model deviates considerably under transient conditions due to the lack of detailed inertia modeling of both the tank and the rest of the system components. Conclusively, the developed 1D simulation model is adequate for on- and off-design models where transient phenomena are of reduced importance, whereas for dynamic and semi-dynamic simulations, more detailed models are needed.
Thermo arrow_drop_down ThermoArticleLicense: CC BYFull-Text: https://www.mdpi.com/2673-7264/3/4/38/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/thermo3040038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Thermo arrow_drop_down ThermoArticleLicense: CC BYFull-Text: https://www.mdpi.com/2673-7264/3/4/38/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/thermo3040038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | SWS-HEATINGEC| SWS-HEATINGAuthors: Tryfon C. Roumpedakis; Aris-Dimitrios Leontaritis; Prokopios Vlachogiannis; Efstratios Varvagiannis; +2 AuthorsTryfon C. Roumpedakis; Aris-Dimitrios Leontaritis; Prokopios Vlachogiannis; Efstratios Varvagiannis; Antonios Charalampidis; Sotirios Karellas;This study regards the evaluation of the performance of a thermally stratified tank as an intermediate combi-storage tank for a solar-driven residential thermal system coupled to a seasonal energy storage system. In such applications, the efficient operation of this intermediate tank is crucial to the enhanced exploitation of the harvested solar energy and the minimization of heat losses. In this perspective, the development of a dedicated model in TRNSYS software and its validation with experimental results are investigated. With respect to the simulation model’s discretization, it was found that beyond 60 nodes, the benefits to the model’s accuracy are almost negligible. Comparing the experimental data with the simulation’s results, the predicted temperature profile converges accurately to the measured values under steady-state conditions (threshold stabilization period of 1000 s after charging/discharging has occurred). However, the response of the model deviates considerably under transient conditions due to the lack of detailed inertia modeling of both the tank and the rest of the system components. Conclusively, the developed 1D simulation model is adequate for on- and off-design models where transient phenomena are of reduced importance, whereas for dynamic and semi-dynamic simulations, more detailed models are needed.
Thermo arrow_drop_down ThermoArticleLicense: CC BYFull-Text: https://www.mdpi.com/2673-7264/3/4/38/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/thermo3040038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Thermo arrow_drop_down ThermoArticleLicense: CC BYFull-Text: https://www.mdpi.com/2673-7264/3/4/38/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/thermo3040038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2018 United StatesPublisher:Purdue University Authors: Byon, Yoo-Suk; Jeong, Jae-Weon;Seasonal Thermal Energy Storage (STES) is widely researched for having benefits in that it utilizes excess energy which would be wasted otherwise. The purpose of this study is to analyze energy efficiency of seasonal solar thermal energy system as heating system for greenhouses and compare it with conventional variable air volume (VAV) heating system. Greenhouse was chosen as a simulation model because it requires constant and stable heating through winter season to extend growing season and also because greenhouse can provide enough area to install solar collectors and heat storage tanks. The proposed seasonal solar thermal energy storage system consists of solar thermal collector, fully mixed heat storage tank, and VAV system. Energy simulation was conducted in two steps: heat storing in summer season, and heating in winter season. For greenhouses with area sizing 1600 m2, solar thermal collector of 1250 m2 and heat storage tank of 2000 m3 were designed. TRNSYS 17 and engineering equation solver (EES) were implemented for simulation and calculation of the systems thermal data. Simulation results showed the tank water temperature rising up to optimal temperature (95 oC) before heating season, and STES heating contributed to 55% of total heating load. Consequently, 30% of total heating cost was cut down showing energy efficiency of seasonal solar thermal energy storage system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a07f778b00551113a95836c391a1ed84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a07f778b00551113a95836c391a1ed84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2018 United StatesPublisher:Purdue University Authors: Byon, Yoo-Suk; Jeong, Jae-Weon;Seasonal Thermal Energy Storage (STES) is widely researched for having benefits in that it utilizes excess energy which would be wasted otherwise. The purpose of this study is to analyze energy efficiency of seasonal solar thermal energy system as heating system for greenhouses and compare it with conventional variable air volume (VAV) heating system. Greenhouse was chosen as a simulation model because it requires constant and stable heating through winter season to extend growing season and also because greenhouse can provide enough area to install solar collectors and heat storage tanks. The proposed seasonal solar thermal energy storage system consists of solar thermal collector, fully mixed heat storage tank, and VAV system. Energy simulation was conducted in two steps: heat storing in summer season, and heating in winter season. For greenhouses with area sizing 1600 m2, solar thermal collector of 1250 m2 and heat storage tank of 2000 m3 were designed. TRNSYS 17 and engineering equation solver (EES) were implemented for simulation and calculation of the systems thermal data. Simulation results showed the tank water temperature rising up to optimal temperature (95 oC) before heating season, and STES heating contributed to 55% of total heating load. Consequently, 30% of total heating cost was cut down showing energy efficiency of seasonal solar thermal energy storage system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a07f778b00551113a95836c391a1ed84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a07f778b00551113a95836c391a1ed84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2018 SwedenPublisher:Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap Authors: Fredriksson, Linda; Johansson, Julia;Sweden is only utilizing half of the available excess heat. To utilize more of the excess heat a seasonal thermal energy storage could be implemented to store excessed heat from the summer when the demand is lower to the winter when the demand is higher. This can be achieved by an integration of a seasonal thermal energy storage to the district heating system. A seasonal thermal energy storage may also reduce the need of the system’s peak load, which often is economically costly and adversely affect the environment. The purpose of the paper is to investigate the possibility for Skövde Värmeverk to implement a seasonal thermal storage. The paper is performed by a literature collection and calculations are made by software programs. The result shows that it is technically possible to implement a pit thermal energy storage and a borhole thermal energy storage, but no outcome shows a profitability within 20 years. A pit thermal energy storage can replace the system’s peak load up to 79 percent and a borhole thermal energy storage up to 2,8 percent. The most suitable case for Skövde Värmeverk is to install a pit thermal energy storage with a storage capacity of 4 GWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2a4db26f0c206ddcc5c1939f7b15771c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2a4db26f0c206ddcc5c1939f7b15771c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2018 SwedenPublisher:Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap Authors: Fredriksson, Linda; Johansson, Julia;Sweden is only utilizing half of the available excess heat. To utilize more of the excess heat a seasonal thermal energy storage could be implemented to store excessed heat from the summer when the demand is lower to the winter when the demand is higher. This can be achieved by an integration of a seasonal thermal energy storage to the district heating system. A seasonal thermal energy storage may also reduce the need of the system’s peak load, which often is economically costly and adversely affect the environment. The purpose of the paper is to investigate the possibility for Skövde Värmeverk to implement a seasonal thermal storage. The paper is performed by a literature collection and calculations are made by software programs. The result shows that it is technically possible to implement a pit thermal energy storage and a borhole thermal energy storage, but no outcome shows a profitability within 20 years. A pit thermal energy storage can replace the system’s peak load up to 79 percent and a borhole thermal energy storage up to 2,8 percent. The most suitable case for Skövde Värmeverk is to install a pit thermal energy storage with a storage capacity of 4 GWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2a4db26f0c206ddcc5c1939f7b15771c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2a4db26f0c206ddcc5c1939f7b15771c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type , Article 2017Publisher:Zenodo Funded by:EC | CHESS-SETUPEC| CHESS-SETUPAbad, Ferran; Grau, Marc; Pérez, Marcos; Wansdronk, Renee; Barley, Eleanor; Olatunji, Yomi; Hewitt, Neil;Sensible Heat Storage is the most common method of thermal energy storage, particularly in the form of hot water tanks. Essentially, sensible heat storage systems work by charging them with heat from a higher temperature source to raise the temperature of the thermal store, and by extracting heat to discharge them. On a larger scale, these sensible heat stores should be designed to store heat long term over seasons, which allow the thermal storage systems to be charged using solar thermal systems to then supply heat over colder periods and can be applied in an array of buildings, including individual dwellings and larger buildings. These seasonal storage systems consist of: Tank Thermal Energy Storage (TTES), Pit Thermal Energy Storage (PTES), Borehole Thermal Energy Storage (BTES) and Aquifer Thermal Energy Storage (ATES). The aim of this report is to provide useful information about the different construction techniques for the mentioned systems in addition to FP7 Einstein Project, where a big information research has already been done, analysing the main characteristics that interfere in the various proceedings. In addition, a general study for the three different CHESS-SETUP pilots is done regarding the availability and constraints of every case to introduce the different technologies. Finally, in order to ensure the correct operation of the installations, some guidance of the different types of maintenance is done as well as maintenance plans for the different elements of the system.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 15 Powered bymore_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type , Article 2017Publisher:Zenodo Funded by:EC | CHESS-SETUPEC| CHESS-SETUPAbad, Ferran; Grau, Marc; Pérez, Marcos; Wansdronk, Renee; Barley, Eleanor; Olatunji, Yomi; Hewitt, Neil;Sensible Heat Storage is the most common method of thermal energy storage, particularly in the form of hot water tanks. Essentially, sensible heat storage systems work by charging them with heat from a higher temperature source to raise the temperature of the thermal store, and by extracting heat to discharge them. On a larger scale, these sensible heat stores should be designed to store heat long term over seasons, which allow the thermal storage systems to be charged using solar thermal systems to then supply heat over colder periods and can be applied in an array of buildings, including individual dwellings and larger buildings. These seasonal storage systems consist of: Tank Thermal Energy Storage (TTES), Pit Thermal Energy Storage (PTES), Borehole Thermal Energy Storage (BTES) and Aquifer Thermal Energy Storage (ATES). The aim of this report is to provide useful information about the different construction techniques for the mentioned systems in addition to FP7 Einstein Project, where a big information research has already been done, analysing the main characteristics that interfere in the various proceedings. In addition, a general study for the three different CHESS-SETUP pilots is done regarding the availability and constraints of every case to introduce the different technologies. Finally, in order to ensure the correct operation of the installations, some guidance of the different types of maintenance is done as well as maintenance plans for the different elements of the system.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 15 Powered bymore_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 Spain Funded by:EC | SWS-HEATINGEC| SWS-HEATINGCrespo, Alicia; Gracia Cuesta, Alvaro de; Vérez, David; Cabeza, Luisa F.; Fernàndez Camon, César;handle: 10459.1/83962
This work is partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme. This project has received funding from the European Union´s Horizon 2020 research and innovation programme under the No 764025 (SWS-Heating). Alicia Crespo would also like to acknowledge the financial support of the FI-SDUR grant from the AGAUR of the Generalitat de Catalunya and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ea149c08384055d2c4b10ff132ff56b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ea149c08384055d2c4b10ff132ff56b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 Spain Funded by:EC | SWS-HEATINGEC| SWS-HEATINGCrespo, Alicia; Gracia Cuesta, Alvaro de; Vérez, David; Cabeza, Luisa F.; Fernàndez Camon, César;handle: 10459.1/83962
This work is partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme. This project has received funding from the European Union´s Horizon 2020 research and innovation programme under the No 764025 (SWS-Heating). Alicia Crespo would also like to acknowledge the financial support of the FI-SDUR grant from the AGAUR of the Generalitat de Catalunya and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ea149c08384055d2c4b10ff132ff56b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ea149c08384055d2c4b10ff132ff56b6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1985 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Kannberg, L.D.;doi: 10.2172/5277873
Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5277873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5277873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1985 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Kannberg, L.D.;doi: 10.2172/5277873
Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5277873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5277873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2016 NetherlandsAuthors: Goorden, J.J.H. (author);Architecture and The Built Environment ; Architectural Engineering + Technology
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a37cd7d0164e2f7de6c671dc4a85cb2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a37cd7d0164e2f7de6c671dc4a85cb2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2016 NetherlandsAuthors: Goorden, J.J.H. (author);Architecture and The Built Environment ; Architectural Engineering + Technology
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a37cd7d0164e2f7de6c671dc4a85cb2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a37cd7d0164e2f7de6c671dc4a85cb2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 1995 United StatesPublisher:Pacific Northwest Laboratory Authors: Somasundaram, S.; Katipamula, S.; Williams, H.R.;The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ded7591fdc6813ae1bb8717c00513a53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ded7591fdc6813ae1bb8717c00513a53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 1995 United StatesPublisher:Pacific Northwest Laboratory Authors: Somasundaram, S.; Katipamula, S.; Williams, H.R.;The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ded7591fdc6813ae1bb8717c00513a53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::ded7591fdc6813ae1bb8717c00513a53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2018Publisher:Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap Authors: Fredriksson, Linda; Johansson, Julia;Sweden is only utilizing half of the available excess heat. To utilize more of the excess heat a seasonal thermal energy storage could be implemented to store excessed heat from the summer when the demand is lower to the winter when the demand is higher. This can be achieved by an integration of a seasonal thermal energy storage to the district heating system. A seasonal thermal energy storage may also reduce the need of the system’s peak load, which often is economically costly and adversely affect the environment. The purpose of the paper is to investigate the possibility for Skövde Värmeverk to implement a seasonal thermal storage. The paper is performed by a literature collection and calculations are made by software programs. The result shows that it is technically possible to implement a pit thermal energy storage and a borhole thermal energy storage, but no outcome shows a profitability within 20 years. A pit thermal energy storage can replace the system’s peak load up to 79 percent and a borhole thermal energy storage up to 2,8 percent. The most suitable case for Skövde Värmeverk is to install a pit thermal energy storage with a storage capacity of 4 GWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::b7e3b1dfd2264af18d20462ebf2fb0a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::b7e3b1dfd2264af18d20462ebf2fb0a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2018Publisher:Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap Authors: Fredriksson, Linda; Johansson, Julia;Sweden is only utilizing half of the available excess heat. To utilize more of the excess heat a seasonal thermal energy storage could be implemented to store excessed heat from the summer when the demand is lower to the winter when the demand is higher. This can be achieved by an integration of a seasonal thermal energy storage to the district heating system. A seasonal thermal energy storage may also reduce the need of the system’s peak load, which often is economically costly and adversely affect the environment. The purpose of the paper is to investigate the possibility for Skövde Värmeverk to implement a seasonal thermal storage. The paper is performed by a literature collection and calculations are made by software programs. The result shows that it is technically possible to implement a pit thermal energy storage and a borhole thermal energy storage, but no outcome shows a profitability within 20 years. A pit thermal energy storage can replace the system’s peak load up to 79 percent and a borhole thermal energy storage up to 2,8 percent. The most suitable case for Skövde Värmeverk is to install a pit thermal energy storage with a storage capacity of 4 GWh.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::b7e3b1dfd2264af18d20462ebf2fb0a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::b7e3b1dfd2264af18d20462ebf2fb0a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu