- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Conference object 2016Scapino, Luca; Zondag, Herbert A.; Van Bael, Johan; Diriken, Jan; Rindt, Camilo C.M.;Thermochemical heat storage has the potential to store a large amount of thermal energy from renewables and to cope with the seasonal mismatch of energy demand and supply, ideally without energy losses typical of sensible heat storage. However, in order to have a commercially attractive system, research at material, reactor, and ultimately at system level is still required. The aim of this work is to investigate the current state-of-the-art research at prototype- and system-scale, and to estimate the performance of ideal long-term low-temperature thermochemical storage systems in terms of energy densities and storage capacity costs. First, a review on existing systems based on solid/gas reactions is carried out. Especially for open systems, the choice of adsorbents rather than salt hydrates as active materials is prominent due to their enhanced stability. However, high material costs and desorption temperatures, coupled with lower energy densities, decrease their commercial attractiveness. Then, the performance of ideal open thermochemical heat storage systems based on solid/gas reactions are estimated for different active materials among which salt hydrates, an adsorbent, and an ideal composite. The common reference scenario assumes that the seasonal space heating energy of a passive house has to be stored. The results show that the open system based on a composite material, can represent a valid compromise between hydrothermal stability and storage capacity costs. However, it results in a very large system for the assumed reference scenario conditions. The performances of open systems are then compared with the ideal performance of closed solid sorption systems. The results show that closed systems are in general more expensive and less compact for the assumed reactor layouts. Finally, liquid sorption systems from the literature are compared with the open and closed solid sorption systems. The results show that most of the liquid systems are not able to achieve the minimum temperature required by the consumer in the reference scenario. However, a liquid sorption system based on NaOH-H2O can in principle satisfy the consumer needs and result more compact and less expensive than solid sorption systems based on pure adsorbents and certain salt hydrates. Beside research at material- and reactor-scale, integration of thermochemical storage at grid level has to be investigated to assess its techno-economic feasibility based on their performance and interactions with production and consumption technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::bb2335d4f4018353ca25fdc833975364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::bb2335d4f4018353ca25fdc833975364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2009 GermanyMarx, R.; Bauer, D.; Nußbicker-Lux, J.; Heidemann, H.; Müller-Steinhagen, Hans;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::05b70f35ebc72875545b0cb8a90693fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::05b70f35ebc72875545b0cb8a90693fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2009 GermanyAuthors: Marx, R.; Ochs, F.; Heidemann, W.; Müller-Steinhagen, Hans;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::aa074dd11a39637548932c2ed6a7e7b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::aa074dd11a39637548932c2ed6a7e7b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2008 GermanyOchs, F.; Nußbicker, J.; Marx, R.; Koch, H.; Heidemann, W.; Müller-Steinhagen, Hans;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::4cd478291972ebdb607affd3aaa9c616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::4cd478291972ebdb607affd3aaa9c616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Jarek Kurnitski; Jarek Kurnitski; Jevgeni Fadejev; Jevgeni Fadejev;Abstract With growing demand in improving building's energy efficiency, utilization of energy from renewable sources, such as ground energy, becomes more common. This paper focuses on the detailed modelling issues in a whole building simulation environment providing an approach for a design of a heat pump plant with boreholes or energy piles, that was developed for a case of one storey commercial hall building. Modelling was performed in whole building simulation software IDA-ICE, where most of the modelled components were defined as manufacturer specific products. Recently developed three dimensional borehole model was validated with the use of actual borehole measurement data. Heat pump model calibration parameters equations, which are needed to setup model according to manufacturer specific performance map product data, were derived and applied. According to results of conducted 20-years long-term simulations, consideration of seasonal thermal storage can become feasible. Validation of borehole model showed that the model can simulate very accurate dynamic performance and is highly suitable for coupling with dynamic plant models. Different ground surfaces boundary conditions of geothermal energy piles and field of boreholes resulted in 23% more efficient performance of energy piles in the case of the same field configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Kamil Kubiński; Łukasz Szabłowski;The article focuses on existing technologies developed to harvest and store solar irradiance as a source of primary energy in district heating systems. In the study particular attention was given to solar collector systems cooperating with seasonal heat storage solutions. Motivating this work was the search for a tool to assess achievable solar fraction ‒ the ratio of usable solar energy to total energy consumption. The outcomes of this work are: (i) a simplified dynamic model facilitating evaluation of the proposed solutions, and (ii) selection of optimal operating parameters of the proposed system. A brief review and discussion is made of the technical and legal limitations on possible investments. The ground rules of cooperation between solar based heat sources with seasonal storage systems and conventional industrial boilers and district heating network have been set out. The work touches on the physical components of the discussed systems. Commercially available solar collectors and heat exchangers are presented and their pros and cons discussed. Some in-depth analysis of seasonal heat storage solutions is provided, in particular on tank and pit thermal energy storage as well as storage solutions that use boreholes or aquifer layers. Examples are given of existing plants characterized by high solar fraction located in the EU region and outside of it. A simplified dynamic model developed in the Aspen Hysys software environment is described and the results discussed. Due to the high complexity of the primary problem, the model has been limited to a solar collector installation, seasonal heat storage system and auxiliary boiler. The results obtained from the model are discussed and future steps are presented in the last part of the article. These recommendations seek to further the development of an efficient way of analysis and commercial assessment of such systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Authors: Peter Sorknæs;Abstract To better facilitate renewable energy systems, the district heating sector is currently changing towards lower temperatures and increased cross-sectoral integration. Seasonal thermal energy storage systems alongside heat pumps have received an increasing attention. However, the operation of a seasonal thermal energy storage system alongside a heat pump is more complex than a short-term thermal energy storage system, and as such, several complex simulation models have been developed. These models have shown to be usable for simulating the operation, but due to their complexity are difficult to implement in simulation models that focus on overall energy system analyses. Based on the operation of an existing seasonal thermal energy storage system, this paper provides a simulation method for a seasonal thermal energy storage system with a heat pump that can be utilized in overall energy system simulation models. The simulation method is based on the proven different operational situations of the seasonal thermal energy storage system. The method is shown to be able to approximate the actual operation on an hourly basis and the yearly thermal losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.03.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.03.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Trans Tech Publications, Ltd. Authors: Wojciech Bujalski; Jarosław Milewski; Marcin Wołowicz;The paper presents a theoretical investigation of using a Seasonal Thermal Energy Storage facility (STES) to cover the heat demand of a complex of four buildings. The STES is placed in the ground and connected to both the local district heating network and solar panels. A number of scenarios were investigated to find an adequate size of the STES (tank size and solar panel area.) The results obtained show that the use of a STES could reduce heat consumption by 22100% depending on the architecture solution chosen.
Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2013 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.467.270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2013 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.467.270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Sirén; Kai; Hirvonen, Janne;Abstract Solar energy use in Nordic countries suffers from a high seasonal mismatch of generation and demand. However, given a large enough community, seasonal thermal storage could be utilized to store summertime heat gains for use in winter. This simulation study examined a Finnish case of fully electric solar heating, where heat pumps (HP) powered by photovoltaic (PV) panels were used for generating heat for both immediate use and for seasonal storage through a borehole thermal energy storage (BTES) system. Multi-objective optimization of LCC and energy use was performed by a genetic algorithm and TRNSYS simulations. Comparison was done between communities of a 100 and 500 buildings. The need for purchased electricity was between 40 and 26 kWh/m2 per year for the optimal configurations. For the same cases the life cycle cost was between 220 and 340 €/m2. Up to 98% renewable energy fraction was obtained for heating, showing that even in Finland it is possible to provide practically all heating by solar energy. The PV-type heating system was also compared to a solar thermal heating system from a previous study and it was found that the new design had as much as 36% lower life cycle cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.04.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.04.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Wenxing Shi; Xianting Li; Yang Zhao; Chengchu Yan; Chengchu Yan;Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not explored sufficiently. This paper presents a compound cold storage system that combines a heat pipe-based seasonal ice storage system with a chilled water storage system. The seasonal ice storage system automatically charges winter cold energy in the form of ice. In summer, the stored ice is extracted for cooling, and then the melting ice is used as a chilling medium for chilled water storage. Design optimization of the seasonal ice storage system and the compound storage system is addressed, including the sizes of heat pipes, the configuration and volume of the cold storage tank and the chiller capacity. A case study is conducted to demonstrate the design and the application of the proposed system in a real building in Beijing. Results show that the appropriate combination of the two types of cold storage can greatly improve the applicability of the seasonal cold storage and reduce the life-cycle cost of a building cooling system by 40%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object 2016Scapino, Luca; Zondag, Herbert A.; Van Bael, Johan; Diriken, Jan; Rindt, Camilo C.M.;Thermochemical heat storage has the potential to store a large amount of thermal energy from renewables and to cope with the seasonal mismatch of energy demand and supply, ideally without energy losses typical of sensible heat storage. However, in order to have a commercially attractive system, research at material, reactor, and ultimately at system level is still required. The aim of this work is to investigate the current state-of-the-art research at prototype- and system-scale, and to estimate the performance of ideal long-term low-temperature thermochemical storage systems in terms of energy densities and storage capacity costs. First, a review on existing systems based on solid/gas reactions is carried out. Especially for open systems, the choice of adsorbents rather than salt hydrates as active materials is prominent due to their enhanced stability. However, high material costs and desorption temperatures, coupled with lower energy densities, decrease their commercial attractiveness. Then, the performance of ideal open thermochemical heat storage systems based on solid/gas reactions are estimated for different active materials among which salt hydrates, an adsorbent, and an ideal composite. The common reference scenario assumes that the seasonal space heating energy of a passive house has to be stored. The results show that the open system based on a composite material, can represent a valid compromise between hydrothermal stability and storage capacity costs. However, it results in a very large system for the assumed reference scenario conditions. The performances of open systems are then compared with the ideal performance of closed solid sorption systems. The results show that closed systems are in general more expensive and less compact for the assumed reactor layouts. Finally, liquid sorption systems from the literature are compared with the open and closed solid sorption systems. The results show that most of the liquid systems are not able to achieve the minimum temperature required by the consumer in the reference scenario. However, a liquid sorption system based on NaOH-H2O can in principle satisfy the consumer needs and result more compact and less expensive than solid sorption systems based on pure adsorbents and certain salt hydrates. Beside research at material- and reactor-scale, integration of thermochemical storage at grid level has to be investigated to assess its techno-economic feasibility based on their performance and interactions with production and consumption technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::bb2335d4f4018353ca25fdc833975364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::bb2335d4f4018353ca25fdc833975364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2009 GermanyMarx, R.; Bauer, D.; Nußbicker-Lux, J.; Heidemann, H.; Müller-Steinhagen, Hans;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::05b70f35ebc72875545b0cb8a90693fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::05b70f35ebc72875545b0cb8a90693fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2009 GermanyAuthors: Marx, R.; Ochs, F.; Heidemann, W.; Müller-Steinhagen, Hans;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::aa074dd11a39637548932c2ed6a7e7b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::aa074dd11a39637548932c2ed6a7e7b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2008 GermanyOchs, F.; Nußbicker, J.; Marx, R.; Koch, H.; Heidemann, W.; Müller-Steinhagen, Hans;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::4cd478291972ebdb607affd3aaa9c616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::4cd478291972ebdb607affd3aaa9c616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Jarek Kurnitski; Jarek Kurnitski; Jevgeni Fadejev; Jevgeni Fadejev;Abstract With growing demand in improving building's energy efficiency, utilization of energy from renewable sources, such as ground energy, becomes more common. This paper focuses on the detailed modelling issues in a whole building simulation environment providing an approach for a design of a heat pump plant with boreholes or energy piles, that was developed for a case of one storey commercial hall building. Modelling was performed in whole building simulation software IDA-ICE, where most of the modelled components were defined as manufacturer specific products. Recently developed three dimensional borehole model was validated with the use of actual borehole measurement data. Heat pump model calibration parameters equations, which are needed to setup model according to manufacturer specific performance map product data, were derived and applied. According to results of conducted 20-years long-term simulations, consideration of seasonal thermal storage can become feasible. Validation of borehole model showed that the model can simulate very accurate dynamic performance and is highly suitable for coupling with dynamic plant models. Different ground surfaces boundary conditions of geothermal energy piles and field of boreholes resulted in 23% more efficient performance of energy piles in the case of the same field configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Kamil Kubiński; Łukasz Szabłowski;The article focuses on existing technologies developed to harvest and store solar irradiance as a source of primary energy in district heating systems. In the study particular attention was given to solar collector systems cooperating with seasonal heat storage solutions. Motivating this work was the search for a tool to assess achievable solar fraction ‒ the ratio of usable solar energy to total energy consumption. The outcomes of this work are: (i) a simplified dynamic model facilitating evaluation of the proposed solutions, and (ii) selection of optimal operating parameters of the proposed system. A brief review and discussion is made of the technical and legal limitations on possible investments. The ground rules of cooperation between solar based heat sources with seasonal storage systems and conventional industrial boilers and district heating network have been set out. The work touches on the physical components of the discussed systems. Commercially available solar collectors and heat exchangers are presented and their pros and cons discussed. Some in-depth analysis of seasonal heat storage solutions is provided, in particular on tank and pit thermal energy storage as well as storage solutions that use boreholes or aquifer layers. Examples are given of existing plants characterized by high solar fraction located in the EU region and outside of it. A simplified dynamic model developed in the Aspen Hysys software environment is described and the results discussed. Due to the high complexity of the primary problem, the model has been limited to a solar collector installation, seasonal heat storage system and auxiliary boiler. The results obtained from the model are discussed and future steps are presented in the last part of the article. These recommendations seek to further the development of an efficient way of analysis and commercial assessment of such systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.07.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Authors: Peter Sorknæs;Abstract To better facilitate renewable energy systems, the district heating sector is currently changing towards lower temperatures and increased cross-sectoral integration. Seasonal thermal energy storage systems alongside heat pumps have received an increasing attention. However, the operation of a seasonal thermal energy storage system alongside a heat pump is more complex than a short-term thermal energy storage system, and as such, several complex simulation models have been developed. These models have shown to be usable for simulating the operation, but due to their complexity are difficult to implement in simulation models that focus on overall energy system analyses. Based on the operation of an existing seasonal thermal energy storage system, this paper provides a simulation method for a seasonal thermal energy storage system with a heat pump that can be utilized in overall energy system simulation models. The simulation method is based on the proven different operational situations of the seasonal thermal energy storage system. The method is shown to be able to approximate the actual operation on an hourly basis and the yearly thermal losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.03.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.03.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Trans Tech Publications, Ltd. Authors: Wojciech Bujalski; Jarosław Milewski; Marcin Wołowicz;The paper presents a theoretical investigation of using a Seasonal Thermal Energy Storage facility (STES) to cover the heat demand of a complex of four buildings. The STES is placed in the ground and connected to both the local district heating network and solar panels. A number of scenarios were investigated to find an adequate size of the STES (tank size and solar panel area.) The results obtained show that the use of a STES could reduce heat consumption by 22100% depending on the architecture solution chosen.
Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2013 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.467.270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Mechanics an... arrow_drop_down Applied Mechanics and MaterialsArticle . 2013 . Peer-reviewedLicense: Trans Tech Publications Copyright and Content Usage PolicyData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4028/www.scientific.net/amm.467.270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Sirén; Kai; Hirvonen, Janne;Abstract Solar energy use in Nordic countries suffers from a high seasonal mismatch of generation and demand. However, given a large enough community, seasonal thermal storage could be utilized to store summertime heat gains for use in winter. This simulation study examined a Finnish case of fully electric solar heating, where heat pumps (HP) powered by photovoltaic (PV) panels were used for generating heat for both immediate use and for seasonal storage through a borehole thermal energy storage (BTES) system. Multi-objective optimization of LCC and energy use was performed by a genetic algorithm and TRNSYS simulations. Comparison was done between communities of a 100 and 500 buildings. The need for purchased electricity was between 40 and 26 kWh/m2 per year for the optimal configurations. For the same cases the life cycle cost was between 220 and 340 €/m2. Up to 98% renewable energy fraction was obtained for heating, showing that even in Finland it is possible to provide practically all heating by solar energy. The PV-type heating system was also compared to a solar thermal heating system from a previous study and it was found that the new design had as much as 36% lower life cycle cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.04.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.04.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Wenxing Shi; Xianting Li; Yang Zhao; Chengchu Yan; Chengchu Yan;Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not explored sufficiently. This paper presents a compound cold storage system that combines a heat pipe-based seasonal ice storage system with a chilled water storage system. The seasonal ice storage system automatically charges winter cold energy in the form of ice. In summer, the stored ice is extracted for cooling, and then the melting ice is used as a chilling medium for chilled water storage. Design optimization of the seasonal ice storage system and the compound storage system is addressed, including the sizes of heat pipes, the configuration and volume of the cold storage tank and the chiller capacity. A case study is conducted to demonstrate the design and the application of the proposed system in a real building in Beijing. Results show that the appropriate combination of the two types of cold storage can greatly improve the applicability of the seasonal cold storage and reduce the life-cycle cost of a building cooling system by 40%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu