Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,201 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • �� ���������������������������� ������������������ ������������������ ���������� �������� ������������������������ ���������������������������� ������������������ ������ ���� �������������������� �������� �������������� ������ mW, ���� �������� ������ �������� ������ ����������-�������������������� ��������������������. ������������������ ���������������� ������ ������������������ 20-�������� ���� ���������� ���� �������������������������� �������������������������� ���������������� ������������ ��������������������, ���������������������������������� ������ ���������������������� ���������������� ������ �������������� ������ �������������� ���������������� ������ IoT, ������������������������ ���� ���������� ���������������������� ������ ����������������������. �������� ������ ������������������ �������������������� �������������������� ���� ���������������������� ������ ������������������������������ �������������������� ������������������ (PEH) ���������������������� ���������� ���� ������������ �������������� ������������������������ ���������������������� ������ ���������������� ���������� �������� �������������������������� ������������������. �������������� ���������������������� �������������� �������������� ���� ������������������������ ������������������������ ������������ ������ ������������ ��������������������, �������������������� ���� ������������ ���������������������������� ������������ ������ ���������������� �� �������������������� ������ ���������������������� �������������������� ������ PEH �������� ������������������������ ���������������������� ������ ������������������������������ ���������������������� ���������������� �������������������� ������������������������������ ���������������������� ������ �������������� �������������������� �������������� ���������������������� ������ ������������ ���������������� ������ ������ �������������� ������������ ��������. ���� ������ ���������� �������� �������������� ������������ �� ������������ �������������������� ������ ���������������������� ���������������� ������ PEH �������� ������ ���������������������� ���������������� ���������� �������������������� ������ ������������������ ��������������������. ���� �������������������������� �������������� ���������������������������������� ���� ������������������ ������������������������ ������������������������ ������������������ ������ ������������������������������ ������������ ������ ������ �������������� ������ ������������������. �� ���������������������� ������ �������������������������� ���������� �������� ���� �������������������� ������ ������ ���� �������������������� ����������������. ���� �������������������������� ������������������ �������������������� ������ ���������������������� �������������������� ������ ���������������� ���� ������������������ �������������� ���������������� �������������������� �������������������� ���������� ������ ���������������� ��������, �������� ���� �������������� ������������ �� ������������������������ ���� ������ �������������������� ������ �������������� ������������ ������ ������ ������������ ����������������. ���������������� ���� ������ ���������������������� ���������������� ������ �������������� ������������ ���������������� ���� �������� ������������������ ���������������� �������������� ������ ��������������������, ���������������������� �������������������� �������������� ���� �������� ���� ���������� ������������������ ������ ������������������ ������������������ ������ ������������������������������ ������������������. �� �������������������������� �������������� ���������� ������ ����������������������, �������� �� ���������������� ���������������� ������������������������ �������������� �������������� ���� ���������������� ���� �������� ���������������������� ������������������������ ������ ������������������ �������������� ���� ���������� ������������������ laser ������ ������������������ ������ ������������������������ ���� ����������������������, �������� ������ ���� �������� �������������������������� ���� 960 fps ������ ��������������������. �������� ���� ���� ���������������� ���������������������� ������ ������������ ���� �������������������� ������ ���� ���������������������� ���������� ������ ���������������� ����������������. �� �������������� ���������� ���������� ������ ������������������ ������������������ ������ ������������������������ ������������������������������ ��������������������, ���� ���������������� ������������ ���� ���������������� ������������������, ���������� ������������������������ ������������������ ������������������ ������������������������, �������������� ������������ ������ ������������ ����������������. ���������� �������������������� ��������������������, ���� �������� ������ ������������������������ ����������������������, ������ ���������������������������������� �������������������� ���� ���������������������� ���������������������������� ���������� (PZT ������ PVDF), ���� ���������������� ���������� ��������-���������������� (super capacitors) ������ �������������� ���������������������� ������ �������������������� ������������������, �� ���������� �������������� ���� ������������������ ������������ ������ ������������ ����������������. �� �������������������� �������������������� ������ �������������������� ���������� �������������� ���� �������������� ������������������������ ������ ������������������ �������������������� ������ ������������������ ������������������ ��������, ���� ���������� ������ ������������ ������ �������������� ������������ ������ ������������ ����������������. ���������� ���� ������������ ���� ������������������ ���������� �� ���������������������� ������ PZT, ������������ ������������������ ������������������������, ���� �������������������� ������ ���������������� �������� ������ ������������ ������������������������ ����������������������������, ���������� ������ �������������������������� ������ �� ���������������������� ���������������� ������ �������������������������� ���������� �������������������� �������������������� ������ �������� ������ ��������������������. �� ������ �������� ������������ ������������������ ������ �������������������� ���������� �������������������� ������ ���������������� ������������������������ ���������� ������ �������������������� �������������������� ������ �������������� ������������������ �������������� ���� ������ �������������� ������������������������ ������ �������������� ���������� �������� �������������������������� ������������������������. ���������������� ���������������������� �������� �������������������� ���������������������������� ������ �������������������� ������ ���������������������� ���� ���������������� ������������, �������� ���� ������������������������������ �������� �������������� �������������������������� ������������������, ���� �������� ���������� ������ ���������������� ������������������ ������ ���������� ������ ������ �������������������� ������������ ��������������������. Energy harvesting is the exploitation of ambient energy in a small scale (mW). Energy harvesting devices aim to replace or reduce the use of batteries in powering wireless sensor network nodes and microelectronic, wearable or MEMS devices and significantly reduce the cabling in systems with a high number of sensors. The significant progress of piezoelectric energy-harvesting technology experienced during the last 20 years, accumulated vast knowledge on the subject, however, the technology readiness level is low and there are only a few complete applications. Moreover, reliability and system integration need more focused effort to be performed. Motivated by the need for extensive experimental data, the main objective of this thesis is the support of the design process of PEH by investigating their real world characteristics and define efficiency and specific power indices allowing a fair assessment of real world performance in specially designed test rigs. Flutter type PEHs that are based on commercial piezoelectric transducers were employed in the experiments. The piezoelectric transducers tested involve the piezoelectric materials polyvinylidene Fluoride (PVDF) and Lead Zirconate Titanate (PZT). Piezoelectric energy harvesters were excited by flow induced vibration, base vibration and combinations of these excitations. The flow-induced excitation was created with air flow. The range of harvesting power reported in the literature for these transducers varied to orders of magnitude and this fact necessitated a systematic assessment with carefully designed test rigs and experimental conditions. Novel test rigs were designed both for aerodynamic and base vibration excitation. Further, it was attempted to calculate the transducer���s output based on visualization of the beam vibration by high speed photography and laser sheet visualization. These investigations were supplemented with the measurement of the combined effect of base vibration and aerodynamic excitation on the voltage output signal. The results were mapped in two dimensions to spot the combination with maximum synergy between the two excitation modes. These experiments determined the attainable harvesting power levels for each one of the transducers examined, along with the specific, optimal excitation conditions. Further, the effect of variable capacitance of the harvesting circuits was assessed, to optimize according to transducer���s type. The measured results of the energy harvesting potential of the different transducer types, in their optimal excitation modes��� combination, was satisfactorily explained by comparative calculations, based on the transducer���s mechanical and piezo-electrical properties and their vibration modes. As a further design optimization step, it was succeeded to aerodynamically excite a PZT transducer of high harvesting power capacity (order of several mW) with a high bending stiffness, by mounting a novel design of aerodynamically excited superstructure. The body of results of this thesis contribute to the optimal design of beam and flutter type piezoelectric transducers that need to be tailored to specific energy harvesting applications, taking into account the available excitation modes and potentials, power levels required and transducer positioning opportunities.

    https://dx.doi.org/1...arrow_drop_down
    https://dx.doi.org/10.26262/he...
    Other literature type . 2021
    License: CC BY NC SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      https://dx.doi.org/1...arrow_drop_down
      https://dx.doi.org/10.26262/he...
      Other literature type . 2021
      License: CC BY NC SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Wouters, Max (author);

    Vibration energy harvesters are especially interesting to use in an environment where there is one dominant vibration frequency present because then the harvesters can be designed to resonate at that specific frequency. To spread out the power yield over more frequencies a multi-modal harvester can be used which can resonate at multiple frequencies. A vibration with more than one sine wave can be manifested in a number of ways. The two frequencies can be present simultaneously, or they can alternate each other. How the energy harvesters react to these different vibration inputs is researched in this paper. Two fundamentally different multi-modal energy harvesters are used here. One which can be described by a coupled system of equations and one uncoupled. Two prototypes of an uncoupled and one coupled device are made and tested on an electromagnetic shaker. The vibration signals are sent to the shaker and the power output of the energy harvesters is measured using piezoelectric transducers mounted to the mechanisms. The results show that a phaseshift in the sine wave input signal generally results in a increase in power, where a decrease was assumed beforehand. When switching the input vibration from the first to the second eigenfrequency the power output does drop significantly, but the coupled mechanism has a substantially higher power output than the uncoupled device. And when the mechanisms are excited by a vibration with two eigenfrequencies at the same time no significant difference between the two can be observed, nor does the power output drop significantly. While the comparison between these two mechanisms is probably accurate, the quantitative conclusions must be taken with a grain of salt as it was noticed in a later stage of the research that the vibration signals were not consistent over the entire time period. At this point it is unclear if an overall better mechanism can be picked between the coupled and uncoupled one. However, it is shown that both have their distinct advantages where they ...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Galchev, Tzeno V.;

    The development of three energy conversion devices that are able to transform vibrations in their surroundings to electrical energy is discussed in this thesis. These energy harvesters are based upon a newly invented architecture called the Parametric Frequency Increased Generator (PFIG). The PFIG structure is designed to efficiently convert low frequency and non-periodic vibrations into electrical power. The three PFIG devices have a combined operating range covering two orders of magnitude in acceleration (0.54-19.6m/s2) and a frequency range spanning up to 60Hz; making them some of the most versatile generators in existence. The PFIG utilizes a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromechanical scavenger. By up-converting the ambient vibration frequency to a higher internal operation frequency, the PFIG achieves better electromechanical coupling. The fixed internal displacement and dynamics of the PFIG allow it to operate more efficiently than resonant generators when the ambient vibration amplitude is higher than the internal displacement limit of the device. The PFIG structure is capable of efficiently converting mechanical vibrations with variable characteristics including amplitude and frequency, into electrical power. The first electromagnetic harvester can generate a peak power of 163μW and an average power of 13.6μW from an input acceleration of 9.8m/s2 at 10Hz, and it can operate up to 60Hz. The internal volume of the generator is 2.12cm3 (3.75 including casing). It sets the state-of-the-art in efficiency in the <20Hz range. The volume figure of merit is 0.068%, which is a 10x improvement over other published works. It has a record high bandwidth figure of merit (0.375%). A second piezoelectric implementation generates 3.25μW of average power under the same excitation conditions, while the volume of the generator is halved (1.2cm3). A third PFIG was developed for critical infrastructure monitoring applications. It is used to harvest the very ...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Dierks, Eric Carl;

    text ; Energy harvesting is playing an increasingly important role in supplying power to monitoring and automation systems such as structural health monitoring using wireless sensor networks. This importance is most notable when the structures to be monitored are in rural, hazardous, or limited access environments such as busy highway bridges where traffic would be greatly disrupted during maintenance, inspection, or battery replacement. This thesis provides an overview of energy harvesting technologies and details the design, prototyping, testing, and simulation of an energy harvester which converts the vibrations of steel highway bridges into stored electrical energy through the use of a translational electromagnetic generator, to power a wireless sensor network for bridge structural health monitoring. An analysis of bridge vibrations, the use of nonlinear and linear harvester compliance, resonant frequency tuning, and bandwidth widening to maximize the energy harvested is presented. The design approach follows broad and focused background research, functional analysis, broad and focused concept generation and selection, early prototyping, parametric modeling and simulation, rapid prototyping with selective laser sintering, and laboratory testing with replicated bridge vibration. The key outcomes of the work are: a breadth of conceptual designs, extensive literature review, a prototype which harvests an average of 80µW under bridge vibration, a prototype which provides quick assembly, mounting and tuning, and the conclusion that a linear harvester out performs a nonlinear harvester with stiffening magnetic compliance for aperiodic vibrations such as those from highway bridges. ; Mechanical Engineering

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Kremer, Daniel;

    The transfer of energy between systems is a natural process, manifesting in many different ways. In engineering transferable energy can be considered wanted or un- wanted. Specifically in mechanical systems, energy transfer can occur as unwanted vibrations, passing from a source to a receiver. In electrical systems, energy trans- fer can be desirable, where energy from a source may be used elsewhere. This work proposes a method to combine the two, converting unwanted mechanical ener- gy into useable electrical energy. A nonlinear energy sink (NES) is a vibration absorber that passively local- izes vibrational energy, removing mechanical energy from a primary system. Con- sisting of a mass-spring-damper such that the stiffness is essentially nonlinear, a NES can localize vibrational energy from a source and dissipate it through damping. Replacing the NES mass with a series of magnets surrounded by coils fixed to the primary mass, the dissipated energy can be directly converted to electrical energy. A NES with energy harvesting properties is constructed and introduced. The system parameters are identified, with the NES having an essentially cubic nonlinear stiffness. A transduction factor is quantified linking the electrical and mechanical systems. An analytic analysis is carried out studying the transient and harmonically excited response of the system. It is found that the energy harvesting does not reduce the vibrational absorption capabilities of the NES. The performance of the system in both transient and harmonically excited responses is found to be heavily influenced by input energies. The system is tested, with good match to analytic results.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yildirim, Tanju;

    In this work, theoretical, numerical, and experimental investigations for vibration based energy harvesters (VBEH) have been conducted. To improve the current limitations of VBEHs, a combination of parametric excitation, geometric nonlinearity arising from centreline extensibility (mid-plane stretching), geometric imperfection, mechanical stoppers and an array configuration have all been explored as suitable mechanisms for increasing the broadband behaviour of a VBEH. This work mainly focused on the increased broadband behaviour of a doubly-clamped beam resonator with a magnetic tip mass and electromagnetic induction as the transduction mechanism; however, cantilever beam setups were also used in some cases when combining this work with existing methods in the literature. A comparison of a transversely and parametrically system was conducted first to assess the benefits of parametric excitation; a model identification procedure was proposed and it was found, sustained oscillations could be achieved and this led to a greater nonlinear broadband behaviour. Using parametric excitation, the effects of electrical damping, load resistance, initial axial displacement, geometric imperfection have been investigated; it was found that by slightly adjusting geometry, the fundamental and parametric resonance were combined and using imperfections an initial softening followed by strong hardening behaviour was observed. Furthermore, the end of this thesis explores using parametric excitation and geometric nonlinearity with conventional methods in the literature, such as, mechanical stoppers and an array configuration; it was found that parametric resonance offered an increased bandwidth and power harvested for the VBEH devices fabricated. Parametric excitation, geometric nonlinearity and other nonlinear mechanisms have a significant effect on the qualitative and quantitative change in the frequency bandwidth of a VBEH device. This behaviour can be used to further enhance the bandwidth, power, efficiency, and performance of ...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Thomson, Gordon Robert;

    The recent development of small scale electronics working within an integrated wireless sensor network has led to the massive potential monitoring of human and structure health. Such devices however are often limited by their battery life, thus there is a great need for energy harvesting to increase the lifespan of these devices. This thesis presents a novel vibration energy harvester based upon dielectric elastomers. A number of numerical models and device setups are investigated, where the device was subjected to a wide variety of harmonic excitation conditions as well as random vibrations. The numerical model was developed through experimentation to determine the nonlinear material properties of a commonly used material, V HBTM 4910. This allowed the device to be compared favourably against other energy harvesters of similar volume. The proposed device is capable of producing a maximum energy density of 9.15J/kg at an excitation frequency of 35Hz. Although observations made regarding the influence of the material nonlinearity have predicted that with a slight increase in the material nonlinearity, the device could significantly increase its energy density to 4359J/kg which would occur at the extremely useful frequency of 3Hz. The creation of this numerical model to simulate an energy harvester also allowed the direct comparison between a promising new electrical scheme and a well developed conventional scheme. Specific investigations were carried out on the device size and orientation, which highlighted an extremely effective setup which can harvest energy from a wide range of excitation conditions and orientations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Witalis Dobry, Marian; Hermann, Tomasz;

    The article presents the differences in energy flow for two human physical models from ISO 10068:2012. The models are compared on the basis of a numerical simulation of energy flow implemented with MATLAB/simulink software. For purposes of comparison, the dynamics of the two Human-Tool systems is mathematically modelled and then used to derive their energy models. The model dynamic structures are fully specified in order to determine and compare three kinds of powers. The study revealed differences between the model characteristics when analysed along different directions of vibrations and as a whole.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Theoretic...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Theoretical and Applied Mechanics
    Article . 2015 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Theoretical and Applied Mechanics
    Article
    License: CC BY NC
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2017
    License: CC BY NC
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    downloaddownloads50
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Theoretic...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Theoretical and Applied Mechanics
      Article . 2015 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Theoretical and Applied Mechanics
      Article
      License: CC BY NC
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2017
      License: CC BY NC
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Veney, Jacob;

    Vibration energy harvesting is an increasingly viable energy source to provide for our energy dependent society. Researchers have studied systems ranging from civil structures like bridges to biomechanical systems including human motion as potential sources of vibration energy. In this work, a bench-top system of a piecewise-linear (PWL) nonlinear vibration harvester is studied. While current nonlinear harvester designs show decreased performance at certain excitation conditions, this design overcomes these issues while also still maintaining the performance of a linear harvester at resonance. A similar idealized model of the harvester was previously studied numerically, and in this work the method is adjusted to handle physical systems to construct a realistic harvester design. With the physically realizable harvester design, the resonant frequency of the system is able to be tuned by changing the gap size between the oscillator and mechanical stopper, ensuring optimal performance over a broad frequency range. In this investigation, the physical system was excited at various frequencies and gap sizes using an electromagnetic shaker. The system dynamics and the displacement transmissibility were then monitored using laser displacement sensors. These results were then compared to the numerical simulation created in MATLAB, illustrating the design's effectiveness. The investigation showed for the first time that the results measured from the physical PWL system followed the expected behavior from the computational tool, although as expected there was some error present in the computational prediction when compared to the physical nonlinear system. ; National Science Foundation Grant No. 1902408, program manager Dr. Harry Dankowicz ; No embargo ; Academic Major: Mechanical Engineering

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Paul E. Phillipson;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Molecular Biology
    Article . 1968 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Molecular Biology
      Article . 1968 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,201 Research products (1 rule applied)
  • �� ���������������������������� ������������������ ������������������ ���������� �������� ������������������������ ���������������������������� ������������������ ������ ���� �������������������� �������� �������������� ������ mW, ���� �������� ������ �������� ������ ����������-�������������������� ��������������������. ������������������ ���������������� ������ ������������������ 20-�������� ���� ���������� ���� �������������������������� �������������������������� ���������������� ������������ ��������������������, ���������������������������������� ������ ���������������������� ���������������� ������ �������������� ������ �������������� ���������������� ������ IoT, ������������������������ ���� ���������� ���������������������� ������ ����������������������. �������� ������ ������������������ �������������������� �������������������� ���� ���������������������� ������ ������������������������������ �������������������� ������������������ (PEH) ���������������������� ���������� ���� ������������ �������������� ������������������������ ���������������������� ������ ���������������� ���������� �������� �������������������������� ������������������. �������������� ���������������������� �������������� �������������� ���� ������������������������ ������������������������ ������������ ������ ������������ ��������������������, �������������������� ���� ������������ ���������������������������� ������������ ������ ���������������� �� �������������������� ������ ���������������������� �������������������� ������ PEH �������� ������������������������ ���������������������� ������ ������������������������������ ���������������������� ���������������� �������������������� ������������������������������ ���������������������� ������ �������������� �������������������� �������������� ���������������������� ������ ������������ ���������������� ������ ������ �������������� ������������ ��������. ���� ������ ���������� �������� �������������� ������������ �� ������������ �������������������� ������ ���������������������� ���������������� ������ PEH �������� ������ ���������������������� ���������������� ���������� �������������������� ������ ������������������ ��������������������. ���� �������������������������� �������������� ���������������������������������� ���� ������������������ ������������������������ ������������������������ ������������������ ������ ������������������������������ ������������ ������ ������ �������������� ������ ������������������. �� ���������������������� ������ �������������������������� ���������� �������� ���� �������������������� ������ ������ ���� �������������������� ����������������. ���� �������������������������� ������������������ �������������������� ������ ���������������������� �������������������� ������ ���������������� ���� ������������������ �������������� ���������������� �������������������� �������������������� ���������� ������ ���������������� ��������, �������� ���� �������������� ������������ �� ������������������������ ���� ������ �������������������� ������ �������������� ������������ ������ ������ ������������ ����������������. ���������������� ���� ������ ���������������������� ���������������� ������ �������������� ������������ ���������������� ���� �������� ������������������ ���������������� �������������� ������ ��������������������, ���������������������� �������������������� �������������� ���� �������� ���� ���������� ������������������ ������ ������������������ ������������������ ������ ������������������������������ ������������������. �� �������������������������� �������������� ���������� ������ ����������������������, �������� �� ���������������� ���������������� ������������������������ �������������� �������������� ���� ���������������� ���� �������� ���������������������� ������������������������ ������ ������������������ �������������� ���� ���������� ������������������ laser ������ ������������������ ������ ������������������������ ���� ����������������������, �������� ������ ���� �������� �������������������������� ���� 960 fps ������ ��������������������. �������� ���� ���� ���������������� ���������������������� ������ ������������ ���� �������������������� ������ ���� ���������������������� ���������� ������ ���������������� ����������������. �� �������������� ���������� ���������� ������ ������������������ ������������������ ������ ������������������������ ������������������������������ ��������������������, ���� ���������������� ������������ ���� ���������������� ������������������, ���������� ������������������������ ������������������ ������������������ ������������������������, �������������� ������������ ������ ������������ ����������������. ���������� �������������������� ��������������������, ���� �������� ������ ������������������������ ����������������������, ������ ���������������������������������� �������������������� ���� ���������������������� ���������������������������� ���������� (PZT ������ PVDF), ���� ���������������� ���������� ��������-���������������� (super capacitors) ������ �������������� ���������������������� ������ �������������������� ������������������, �� ���������� �������������� ���� ������������������ ������������ ������ ������������ ����������������. �� �������������������� �������������������� ������ �������������������� ���������� �������������� ���� �������������� ������������������������ ������ ������������������ �������������������� ������ ������������������ ������������������ ��������, ���� ���������� ������ ������������ ������ �������������� ������������ ������ ������������ ����������������. ���������� ���� ������������ ���� ������������������ ���������� �� ���������������������� ������ PZT, ������������ ������������������ ������������������������, ���� �������������������� ������ ���������������� �������� ������ ������������ ������������������������ ����������������������������, ���������� ������ �������������������������� ������ �� ���������������������� ���������������� ������ �������������������������� ���������� �������������������� �������������������� ������ �������� ������ ��������������������. �� ������ �������� ������������ ������������������ ������ �������������������� ���������� �������������������� ������ ���������������� ������������������������ ���������� ������ �������������������� �������������������� ������ �������������� ������������������ �������������� ���� ������ �������������� ������������������������ ������ �������������� ���������� �������� �������������������������� ������������������������. ���������������� ���������������������� �������� �������������������� ���������������������������� ������ �������������������� ������ ���������������������� ���� ���������������� ������������, �������� ���� ������������������������������ �������� �������������� �������������������������� ������������������, ���� �������� ���������� ������ ���������������� ������������������ ������ ���������� ������ ������ �������������������� ������������ ��������������������. Energy harvesting is the exploitation of ambient energy in a small scale (mW). Energy harvesting devices aim to replace or reduce the use of batteries in powering wireless sensor network nodes and microelectronic, wearable or MEMS devices and significantly reduce the cabling in systems with a high number of sensors. The significant progress of piezoelectric energy-harvesting technology experienced during the last 20 years, accumulated vast knowledge on the subject, however, the technology readiness level is low and there are only a few complete applications. Moreover, reliability and system integration need more focused effort to be performed. Motivated by the need for extensive experimental data, the main objective of this thesis is the support of the design process of PEH by investigating their real world characteristics and define efficiency and specific power indices allowing a fair assessment of real world performance in specially designed test rigs. Flutter type PEHs that are based on commercial piezoelectric transducers were employed in the experiments. The piezoelectric transducers tested involve the piezoelectric materials polyvinylidene Fluoride (PVDF) and Lead Zirconate Titanate (PZT). Piezoelectric energy harvesters were excited by flow induced vibration, base vibration and combinations of these excitations. The flow-induced excitation was created with air flow. The range of harvesting power reported in the literature for these transducers varied to orders of magnitude and this fact necessitated a systematic assessment with carefully designed test rigs and experimental conditions. Novel test rigs were designed both for aerodynamic and base vibration excitation. Further, it was attempted to calculate the transducer���s output based on visualization of the beam vibration by high speed photography and laser sheet visualization. These investigations were supplemented with the measurement of the combined effect of base vibration and aerodynamic excitation on the voltage output signal. The results were mapped in two dimensions to spot the combination with maximum synergy between the two excitation modes. These experiments determined the attainable harvesting power levels for each one of the transducers examined, along with the specific, optimal excitation conditions. Further, the effect of variable capacitance of the harvesting circuits was assessed, to optimize according to transducer���s type. The measured results of the energy harvesting potential of the different transducer types, in their optimal excitation modes��� combination, was satisfactorily explained by comparative calculations, based on the transducer���s mechanical and piezo-electrical properties and their vibration modes. As a further design optimization step, it was succeeded to aerodynamically excite a PZT transducer of high harvesting power capacity (order of several mW) with a high bending stiffness, by mounting a novel design of aerodynamically excited superstructure. The body of results of this thesis contribute to the optimal design of beam and flutter type piezoelectric transducers that need to be tailored to specific energy harvesting applications, taking into account the available excitation modes and potentials, power levels required and transducer positioning opportunities.

    https://dx.doi.org/1...arrow_drop_down
    https://dx.doi.org/10.26262/he...
    Other literature type . 2021
    License: CC BY NC SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      https://dx.doi.org/1...arrow_drop_down
      https://dx.doi.org/10.26262/he...
      Other literature type . 2021
      License: CC BY NC SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Wouters, Max (author);

    Vibration energy harvesters are especially interesting to use in an environment where there is one dominant vibration frequency present because then the harvesters can be designed to resonate at that specific frequency. To spread out the power yield over more frequencies a multi-modal harvester can be used which can resonate at multiple frequencies. A vibration with more than one sine wave can be manifested in a number of ways. The two frequencies can be present simultaneously, or they can alternate each other. How the energy harvesters react to these different vibration inputs is researched in this paper. Two fundamentally different multi-modal energy harvesters are used here. One which can be described by a coupled system of equations and one uncoupled. Two prototypes of an uncoupled and one coupled device are made and tested on an electromagnetic shaker. The vibration signals are sent to the shaker and the power output of the energy harvesters is measured using piezoelectric transducers mounted to the mechanisms. The results show that a phaseshift in the sine wave input signal generally results in a increase in power, where a decrease was assumed beforehand. When switching the input vibration from the first to the second eigenfrequency the power output does drop significantly, but the coupled mechanism has a substantially higher power output than the uncoupled device. And when the mechanisms are excited by a vibration with two eigenfrequencies at the same time no significant difference between the two can be observed, nor does the power output drop significantly. While the comparison between these two mechanisms is probably accurate, the quantitative conclusions must be taken with a grain of salt as it was noticed in a later stage of the research that the vibration signals were not consistent over the entire time period. At this point it is unclear if an overall better mechanism can be picked between the coupled and uncoupled one. However, it is shown that both have their distinct advantages where they ...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Galchev, Tzeno V.;

    The development of three energy conversion devices that are able to transform vibrations in their surroundings to electrical energy is discussed in this thesis. These energy harvesters are based upon a newly invented architecture called the Parametric Frequency Increased Generator (PFIG). The PFIG structure is designed to efficiently convert low frequency and non-periodic vibrations into electrical power. The three PFIG devices have a combined operating range covering two orders of magnitude in acceleration (0.54-19.6m/s2) and a frequency range spanning up to 60Hz; making them some of the most versatile generators in existence. The PFIG utilizes a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromechanical scavenger. By up-converting the ambient vibration frequency to a higher internal operation frequency, the PFIG achieves better electromechanical coupling. The fixed internal displacement and dynamics of the PFIG allow it to operate more efficiently than resonant generators when the ambient vibration amplitude is higher than the internal displacement limit of the device. The PFIG structure is capable of efficiently converting mechanical vibrations with variable characteristics including amplitude and frequency, into electrical power. The first electromagnetic harvester can generate a peak power of 163μW and an average power of 13.6μW from an input acceleration of 9.8m/s2 at 10Hz, and it can operate up to 60Hz. The internal volume of the generator is 2.12cm3 (3.75 including casing). It sets the state-of-the-art in efficiency in the <20Hz range. The volume figure of merit is 0.068%, which is a 10x improvement over other published works. It has a record high bandwidth figure of merit (0.375%). A second piezoelectric implementation generates 3.25μW of average power under the same excitation conditions, while the volume of the generator is halved (1.2cm3). A third PFIG was developed for critical infrastructure monitoring applications. It is used to harvest the very ...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Dierks, Eric Carl;

    text ; Energy harvesting is playing an increasingly important role in supplying power to monitoring and automation systems such as structural health monitoring using wireless sensor networks. This importance is most notable when the structures to be monitored are in rural, hazardous, or limited access environments such as busy highway bridges where traffic would be greatly disrupted during maintenance, inspection, or battery replacement. This thesis provides an overview of energy harvesting technologies and details the design, prototyping, testing, and simulation of an energy harvester which converts the vibrations of steel highway bridges into stored electrical energy through the use of a translational electromagnetic generator, to power a wireless sensor network for bridge structural health monitoring. An analysis of bridge vibrations, the use of nonlinear and linear harvester compliance, resonant frequency tuning, and bandwidth widening to maximize the energy harvested is presented. The design approach follows broad and focused background research, functional analysis, broad and focused concept generation and selection, early prototyping, parametric modeling and simulation, rapid prototyping with selective laser sintering, and laboratory testing with replicated bridge vibration. The key outcomes of the work are: a breadth of conceptual designs, extensive literature review, a prototype which harvests an average of 80µW under bridge vibration, a prototype which provides quick assembly, mounting and tuning, and the conclusion that a linear harvester out performs a nonlinear harvester with stiffening magnetic compliance for aperiodic vibrations such as those from highway bridges. ; Mechanical Engineering

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Kremer, Daniel;

    The transfer of energy between systems is a natural process, manifesting in many different ways. In engineering transferable energy can be considered wanted or un- wanted. Specifically in mechanical systems, energy transfer can occur as unwanted vibrations, passing from a source to a receiver. In electrical systems, energy trans- fer can be desirable, where energy from a source may be used elsewhere. This work proposes a method to combine the two, converting unwanted mechanical ener- gy into useable electrical energy. A nonlinear energy sink (NES) is a vibration absorber that passively local- izes vibrational energy, removing mechanical energy from a primary system. Con- sisting of a mass-spring-damper such that the stiffness is essentially nonlinear, a NES can localize vibrational energy from a source and dissipate it through damping. Replacing the NES mass with a series of magnets surrounded by coils fixed to the primary mass, the dissipated energy can be directly converted to electrical energy. A NES with energy harvesting properties is constructed and introduced. The system parameters are identified, with the NES having an essentially cubic nonlinear stiffness. A transduction factor is quantified linking the electrical and mechanical systems. An analytic analysis is carried out studying the transient and harmonically excited response of the system. It is found that the energy harvesting does not reduce the vibrational absorption capabilities of the NES. The performance of the system in both transient and harmonically excited responses is found to be heavily influenced by input energies. The system is tested, with good match to analytic results.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yildirim, Tanju;

    In this work, theoretical, numerical, and experimental investigations for vibration based energy harvesters (VBEH) have been conducted. To improve the current limitations of VBEHs, a combination of parametric excitation, geometric nonlinearity arising from centreline extensibility (mid-plane stretching), geometric imperfection, mechanical stoppers and an array configuration have all been explored as suitable mechanisms for increasing the broadband behaviour of a VBEH. This work mainly focused on the increased broadband behaviour of a doubly-clamped beam resonator with a magnetic tip mass and electromagnetic induction as the transduction mechanism; however, cantilever beam setups were also used in some cases when combining this work with existing methods in the literature. A comparison of a transversely and parametrically system was conducted first to assess the benefits of parametric excitation; a model identification procedure was proposed and it was found, sustained oscillations could be achieved and this led to a greater nonlinear broadband behaviour. Using parametric excitation, the effects of electrical damping, load resistance, initial axial displacement, geometric imperfection have been investigated; it was found that by slightly adjusting geometry, the fundamental and parametric resonance were combined and using imperfections an initial softening followed by strong hardening behaviour was observed. Furthermore, the end of this thesis explores using parametric excitation and geometric nonlinearity with conventional methods in the literature, such as, mechanical stoppers and an array configuration; it was found that parametric resonance offered an increased bandwidth and power harvested for the VBEH devices fabricated. Parametric excitation, geometric nonlinearity and other nonlinear mechanisms have a significant effect on the qualitative and quantitative change in the frequency bandwidth of a VBEH device. This behaviour can be used to further enhance the bandwidth, power, efficiency, and performance of ...

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Thomson, Gordon Robert;

    The recent development of small scale electronics working within an integrated wireless sensor network has led to the massive potential monitoring of human and structure health. Such devices however are often limited by their battery life, thus there is a great need for energy harvesting to increase the lifespan of these devices. This thesis presents a novel vibration energy harvester based upon dielectric elastomers. A number of numerical models and device setups are investigated, where the device was subjected to a wide variety of harmonic excitation conditions as well as random vibrations. The numerical model was developed through experimentation to determine the nonlinear material properties of a commonly used material, V HBTM 4910. This allowed the device to be compared favourably against other energy harvesters of similar volume. The proposed device is capable of producing a maximum energy density of 9.15J/kg at an excitation frequency of 35Hz. Although observations made regarding the influence of the material nonlinearity have predicted that with a slight increase in the material nonlinearity, the device could significantly increase its energy density to 4359J/kg which would occur at the extremely useful frequency of 3Hz. The creation of this numerical model to simulate an energy harvester also allowed the direct comparison between a promising new electrical scheme and a well developed conventional scheme. Specific investigations were carried out on the device size and orientation, which highlighted an extremely effective setup which can harvest energy from a wide range of excitation conditions and orientations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Witalis Dobry, Marian; Hermann, Tomasz;

    The article presents the differences in energy flow for two human physical models from ISO 10068:2012. The models are compared on the basis of a numerical simulation of energy flow implemented with MATLAB/simulink software. For purposes of comparison, the dynamics of the two Human-Tool systems is mathematically modelled and then used to derive their energy models. The model dynamic structures are fully specified in order to determine and compare three kinds of powers. The study revealed differences between the model characteristics when analysed along different directions of vibrations and as a whole.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Theoretic...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Theoretical and Applied Mechanics
    Article . 2015 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Theoretical and Applied Mechanics
    Article
    License: CC BY NC
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2017
    License: CC BY NC
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    downloaddownloads50
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Theoretic...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Theoretical and Applied Mechanics
      Article . 2015 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Theoretical and Applied Mechanics
      Article
      License: CC BY NC
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2017
      License: CC BY NC
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Veney, Jacob;

    Vibration energy harvesting is an increasingly viable energy source to provide for our energy dependent society. Researchers have studied systems ranging from civil structures like bridges to biomechanical systems including human motion as potential sources of vibration energy. In this work, a bench-top system of a piecewise-linear (PWL) nonlinear vibration harvester is studied. While current nonlinear harvester designs show decreased performance at certain excitation conditions, this design overcomes these issues while also still maintaining the performance of a linear harvester at resonance. A similar idealized model of the harvester was previously studied numerically, and in this work the method is adjusted to handle physical systems to construct a realistic harvester design. With the physically realizable harvester design, the resonant frequency of the system is able to be tuned by changing the gap size between the oscillator and mechanical stopper, ensuring optimal performance over a broad frequency range. In this investigation, the physical system was excited at various frequencies and gap sizes using an electromagnetic shaker. The system dynamics and the displacement transmissibility were then monitored using laser displacement sensors. These results were then compared to the numerical simulation created in MATLAB, illustrating the design's effectiveness. The investigation showed for the first time that the results measured from the physical PWL system followed the expected behavior from the computational tool, although as expected there was some error present in the computational prediction when compared to the physical nonlinear system. ; National Science Foundation Grant No. 1902408, program manager Dr. Harry Dankowicz ; No embargo ; Academic Major: Mechanical Engineering

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Paul E. Phillipson;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Molecular Biology
    Article . 1968 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Molecular Biology
      Article . 1968 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.