Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
23 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 3. Good health

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Qian, Feng;

    The urgent need for a clean and sustainable power supply for wireless sensor nodes and low-power electronics in various monitoring systems and the Internet of Things has led to an explosion of research in substitute energy technologies. Traditional batteries are still the most widely used power source for these applications currently but have been blamed for chemical pollution, high maintenance cost, bulky volume, and limited energy capacity. Ambient energy in different forms such as vibration, movement, heat, wind, and waves otherwise wasted can be converted into usable electricity using proper transduction mechanisms to power sensors and low-power devices or charge rechargeable batteries. This dissertation focuses on the design, modeling, optimization, prototype, and testing of novel piezoelectric energy harvesters for extracting energy from human walking, bio-inspired bi-stable motion, and torsional vibration as an alternative power supply for wireless monitoring systems. To provide a sustainable power supply for health care monitoring systems, a piezoelectric footwear harvester is developed and embedded inside a shoe heel for scavenging energy from human walking. The harvester comprises of multiple 33-mode piezoelectric stacks within single-stage force amplification frames sandwiched between two heel-shaped aluminum plates taking and reallocating the dynamic force at the heel. The single-stage force amplification frame is designed and optimized to transmit, redirect, and amplify the heel-strike force to the inner piezoelectric stack. An analytical model is developed and validated to predict precisely the electromechanical coupling behavior of the harvester. A symmetric finite element model is established to facilitate the mesh of the transducer unit based on a material equivalent model that simplifies the multilayered piezoelectric stack into a bulk. The symmetric FE model is experimentally validated and used for parametric analysis of the single-stage force amplification frame for a large force amplification factor and power output. The results show that an average power output of 9.3 mW/shoe and a peak power output of 84.8 mW are experimentally achieved at the walking speed of 3.0 mph (4.8 km/h). To further improve the power output, a two-stage force amplification compliant mechanism is designed and incorporated into the footwear energy harvester, which could amplify the dynamic force at the heel twice before applied to the inner piezoelectric stacks. An average power of 34.3 mW and a peak power of 110.2 mW were obtained under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. A comparison study demonstrated that the proposed two-stage piezoelectric harvester has a much larger power output than the state-of-the-art results in the literature. A novel bi-stable piezoelectric energy harvester inspired by the rapid shape transition of the Venus flytrap leaves is proposed, modeled and experimentally tested for the purpose of energy harvesting from broadband frequency vibrations. The harvester consists of a piezoelectric macro fiber composite (MFC) transducer, a tip mass, and two sub-beams with bending and twisting deformations created by in-plane pre-displacement constraints using rigid tip-mass blocks. Different from traditional ways to realize bi-stability using nonlinear magnetic forces or residual stress in laminate composites, the proposed bio-inspired bi-stable piezoelectric energy harvester takes advantage of the mutual self-constraint at the free ends of the two cantilever sub-beams with a pre-displacement. This mutual pre-displacement constraint bi-directionally curves the two sub-beams in two directions inducing higher mechanical potential energy. The nonlinear dynamics of the bio-inspired bi-stable piezoelectric energy harvester is investigated under sweeping frequency and harmonic excitations. The results show that the sub-beams of the harvester experience local vibrations, including broadband frequency components during the snap-through, which is desirable for large power output. An average power output of 0.193 mW for a load resistance of 8.2 kΩ is harvested at the excitation frequency of 10 Hz and amplitude of 4.0 g. Torsional vibration widely exists in mechanical engineering but has not yet been well exploited for energy harvesting to provide a sustainable power supply for structural health monitoring systems. A torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer is developed in this dissertation to look into the feasibility of harvesting energy from oil drilling shaft for powering downhole sensors. A theoretical model of the torsional vibration piezoelectric energy harvester is derived and experimentally verified to be capable of characterizing the electromechanical coupling system and predicting the electrical responses. The position of the piezoelectric transducer on the surface of the shaft is parameterized by two variables that are optimized to maximize the power output. Approximate expressions of the voltage and power are derived by simplifying the theoretical model, which gives predictions in good agreement with analytical solutions. Based on the derived approximate expression, physical interpretations of the implicit relationship between the power output and the position parameters of the piezoelectric transducer are given. Doctor of Philosophy Wireless monitoring systems with embedded wireless sensor nodes have been widely applied in human health care, structural health monitoring, home security, environment assessment, and wild animal tracking. One distinctive advantage of wireless monitoring systems is to provide unremitting, wireless monitoring of interesting parameters, and data transmission for timely decision making. However, most of these systems are powered by traditional batteries with finite energy capacity, which need periodic replacement or recharge, resulting in high maintenance costs, interruption of service, and potential environmental pollution. On the other hand, abundant energy in different forms such as solar, wind, heat, and vibrations, diffusely exists in ambient environments surrounding wireless monitoring systems which would be otherwise wasted could be converted into usable electricity by proper energy transduction mechanisms. Energy harvesting, also referred to as energy scavenging and energy conversion, is a technology that uses different energy transduction mechanisms, including electromagnetic, photovoltaic, piezoelectric, electrostatic, triboelectric, and thermoelectric, to convert ambient energy into electricity. Compared with traditional batteries, energy harvesting could provide a continuous and sustainable power supply or directly recharge storage devices like batteries and capacitors without interrupting operation. Among these energy transduction mechanisms, piezoelectric materials have been extensively explored for small-size and low-power generation due to their merits of easy shaping, high energy density, flexible design, and low maintenance cost. Piezoelectric transducers convert mechanical energy induced by dynamic strain into electrical charges through the piezoelectric effect. This dissertation presents novel piezoelectric energy harvesters, including design, modeling, prototyping, and experimental tests for energy harvesting from human walking, broadband bi-stable nonlinear vibrations, and torsional vibrations for powering wireless monitoring systems. A piezoelectric footwear energy harvester is developed and embedded inside a shoe heel for scavenging energy from heel striking during human walking to provide a power supply for wearable sensors embedded in health monitoring systems. The footwear energy harvester consists of multiple piezoelectric stacks, force amplifiers, and two heel-shaped metal plates taking dynamic forces at the heel. The force amplifiers are designed and optimized to redirect and amplify the dynamic force transferred from the heel-shaped plates and then applied to the inner piezoelectric stacks for large power output. An analytical model and a finite model were developed to simulate the electromechanical responses of the harvester. The footwear harvester was tested on a treadmill under different walking speeds to validate the numerical models and evaluate the energy generation performance. An average power output of 9.3 mW/shoe and a peak power output of 84.8 mW are experimentally achieved at the walking speed of 3.0 mph (4.8 km/h). A two-stage force amplifier is designed later to improve the power output further. The dynamic force at the heel is amplified twice by the two-stage force amplifiers before applied to the piezoelectric stacks. An average power output of 34.3 mW and a peak power output of 110.2 mW were obtained from the harvester with the two-stage force amplifiers. A bio-inspired bi-stable piezoelectric energy harvester is designed, prototyped, and tested to harvest energy from broadband vibrations induced by animal motions and fluid flowing for the potential applications of self-powered fish telemetry tags and bird tags. The harvester consists of a piezoelectric macro fiber composite (MFC) transducer, a tip mass, and two sub-beams constrained at the free ends by in-plane pre-displacement, which bends and twists the two sub-beams and consequently creates curvatures in both length and width directions. The bi-direction curvature design makes the cantilever beam have two stable states and one unstable state, which is inspired by the Venus flytrap that could rapidly change its leaves from the open state to the close state to trap agile insects. This rapid shape transition of the Venus flytrap, similar to the vibration of the harvester from one stable state to the other, is accompanied by a large energy release that could be harvested. Detailed design steps and principles are introduced, and a prototype is fabricated to demonstrate and validate the concept. The energy harvesting performance of the harvester is evaluated at different excitation levels. Finally, a piezoelectric energy harvester is developed, analytically modeled, and validated for harvesting energy from the rotation of an oil drilling shaft to seek a continuous power supply for downhole sensors in oil drilling monitoring systems. The position of the piezoelectric transducer on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. Approximate expressions of voltage and power of the torsional vibration piezoelectric energy harvester are derived from the theoretical model. The implicit relationship between the power output and the two position parameters of the transducer is revealed and physically interpreted based on the approximate power expression. Those findings offer a good reference for the practical design of the torsional vibration energy harvesting system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Doctoral thesis . 2020
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Doctoral thesis . 2020
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Amar Miglani; Matthew Germroth; Kristina A. LaPointe; Shaun A. Nguyen; +1 Authors

    AbstractObjectiveTo determine if simultaneous administration of acoustic vibration and oscillating expiratory pressure affects the severity of facial pain among patients with complaint of “sinus headache”.MethodsThis is a prospective single‐arm observational study performed at a tertiary care medical center. Subjects with complaint of sinus headache without evidence of chronic rhinosinusitis on exam or computed tomography participated in a clinical study applying simultaneous acoustic vibrations and positive expiratory pressure to the nasal cavity twice daily over 4 weeks. Efficacy was assessed using three validated pain metrics—pain visual analog scale (VAS), brief pain inventory‐short form (BPI‐SF), and McGill pain questionnaire‐short form (MPQ‐SF). Device safety and patient satisfaction were also assessed using questionnaires.ResultsTwenty‐nine patients (mean age 49 years, 55% female) completed the study without any major adverse events. At the 4 week follow‐up, facial pain VAS improved from mean ± SD of 59.6 ± 15.7 to 34.6 ± 21.7 (p < .001), BPI mean pain (mean ± standard deviation) improved from 4.4 ± 2.0 to 2.9 ± 1.9 (p = .007), and MPQ‐SF total improved from 12.2 ± 6.5 to 6.5 ± 5.2 (p < .001) with approximately 70% of patients achieving a minimal clinically important difference (MCID) across all metrics. Additionally, pain VAS was assessed 5 min after a single use at baseline with significant improvement (p < .001). Eighty‐six percent of subjects would both use device again and recommend it to others.ConclusionsSimultaneous administration of acoustic vibration and oscillating expiratory pressure appears to be a safe treatment for sinus headaches in patients without objective evidence of chronic sinusitis. Results from this initial study are promising with regard to efficacy in treatment of sinus headaches but will require further study.Level of evidence2c.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Laryngoscope Investi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Laryngoscope Investigative Otolaryngology
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Laryngoscope Investi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Laryngoscope Investigative Otolaryngology
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Huan-Chun Lin; Wan-Ting Hung; Shih-Yuan Chen; Tzu-Ming Liu; +6 Authors

    AbstractVirus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article . 2015 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article . 2015 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    62
    citations62
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article . 2015 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article . 2015 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: V G, Suvorov; A E, Shelekhova;

    The study was aimed to reveal efficiency of extracorporeal shock-wave therapy in complex treatment of vibration disease patients. Examination covered 92 patients with varying severity of vibration disease, 58 of which received extracorporeal shock-wave therapy with Piezo Wave device produced by Richard Wolf in addition to traditional treatment. The treatment efficiency was evaluated through its influence on intensity and regression of pain syndrome. Comparative analysis showed that extracorporeal shockwave therapy in the treatment complex considerably increases efficiency and leads to earlier and more stable regression of pain in distal parts of hands. Two variants of chronic pain response to extracorporeal shock-wave therapy were revealed. Marked analgetic potential, good tolerance and stability of the results obtained enable to recommend extracorporeal shock-wave therapy in rehabilitation complex for vibration disease patients.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Kuznetsova, E.V.; Katerinin, S.P.;

    The economic crisis, the coronavirus infection pandemic and climate change on Earth have one source of origin - a change in vibrations of a planetary scale - the Sun, Moon, Earth, respectively, there should be a single method for solving these problems. In this work, through the methodological and historical aspects, the relationship between economic development, coronavirus and climate change is investigated, and a practical example of working with the water resources of the Aral Sea and the climate of adjacent territories is presented, and the possibility of simultaneously solving these issues is shown. It is concluded that human energy-informational activity makes it possible to develop a crisisresistant economy, prevent epidemics and pandemics, and form the climate of a certain area.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Hailong Chen; Jiebo Li; Hongtao Bian; Junrong Zheng; +1 Authors

    The donor/acceptor energy mismatch and vibrational coupling strength dependences of interionic vibrational energy transfer kinetics in electrolyte aqueous solutions were investigated with ultrafast multiple-dimensional vibrational spectroscopy. An analytical equation derived from the Fermi's Golden rule that correlates molecular structural parameters and vibrational energy transfer kinetics was found to be able to describe the intermolecular mode specific vibrational energy transfer. Under the assumption of the dipole-dipole approximation, the distance between anions in the aqueous solutions was obtained from the vibrational energy transfer measurements, confirmed with measurements on the corresponding crystalline samples. The result demonstrates that the mode-specific vibrational energy transfer method holds promise as an angstrom molecular ruler.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    53
    citations53
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mahammad A. Hannan; Aini Hussain; Saad Mutashar; Saad Mutashar; +1 Authors

    Le développement des dispositifs implantés est essentiel en raison de leur effet direct sur la vie et la sécurité de l'humanité. Cet article présente les enjeux et défis actuels liés à toutes les méthodes utilisées pour récolter l'énergie pour les dispositifs biomédicaux implantables. Les avantages, les inconvénients et les tendances futures de chaque méthode sont discutés. Le concept de récupération d'énergie à partir de sources environnementales et de mouvement du corps humain pour les dispositifs implantables a acquis une nouvelle pertinence. Dans cette revue, les énergies radiantes cinétiques, électromagnétiques, thermiques et infrarouges de récolte sont discutées. Les problèmes et défis actuels liés aux applications typiques de ces méthodes de récupération d'énergie sont illustrés. Des suggestions et des discussions sur les progrès de la recherche sur les dispositifs implantables sont également fournies. Cette revue devrait accroître les efforts de recherche pour développer des dispositifs implantables sans batterie avec une taille de trou réduite, une faible puissance, un rendement élevé, un débit de données élevé et une fiabilité et une faisabilité améliorées. Sur la base de la littérature actuelle, nous pensons que la liaison de couplage inductif est la méthode appropriée à utiliser pour alimenter les appareils sans batterie. Par conséquent, dans cette étude, l'efficacité énergétique de la méthode de couplage inductif est validée par Matlab sur la base des valeurs suggérées. En poursuivant les recherches et les améliorations, on s'attend à ce que les dispositifs médicaux implantables et portables soient à l'avenir exempts de piles. El desarrollo de dispositivos implantados es esencial debido a su efecto directo en la vida y la seguridad de la humanidad. Este documento presenta los problemas y desafíos actuales relacionados con todos los métodos utilizados para recolectar energía para dispositivos biomédicos implantables. Se discuten las ventajas, desventajas y tendencias futuras de cada método. El concepto de recolección de energía de fuentes ambientales y movimiento del cuerpo humano para dispositivos implantables ha ganado una nueva relevancia. En esta revisión, se discuten las energías radiantes cinéticas, electromagnéticas, térmicas e infrarrojas de cosecha. Se ilustran los problemas y desafíos actuales relacionados con las aplicaciones típicas de estos métodos para la recolección de energía. También se proporcionan sugerencias y discusiones sobre el progreso de la investigación sobre dispositivos implantables. Se espera que esta revisión aumente los esfuerzos de investigación para desarrollar dispositivos implantables sin batería con un tamaño de orificio reducido, baja potencia, alta eficiencia, alta velocidad de datos y mayor confiabilidad y viabilidad. Basándonos en la literatura actual, creemos que el enlace de acoplamiento inductivo es el método adecuado para alimentar los dispositivos sin batería. Por lo tanto, en este estudio, la eficiencia energética del método de acoplamiento inductivo es validada por MATLAB en función de los valores sugeridos. Mediante una mayor investigación y mejoras, en el futuro se espera que los dispositivos médicos implantables y portátiles estén libres de baterías. The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. يعد تطوير الأجهزة المزروعة أمرًا ضروريًا بسبب تأثيرها المباشر على حياة وسلامة البشرية. تعرض هذه الورقة القضايا والتحديات الحالية المتعلقة بجميع الطرق المستخدمة لحصاد الطاقة للأجهزة الطبية الحيوية القابلة للزرع. تتم مناقشة مزايا كل طريقة وعيوبها واتجاهاتها المستقبلية. اكتسب مفهوم حصاد الطاقة من المصادر البيئية وحركة جسم الإنسان للأجهزة القابلة للزرع أهمية جديدة. في هذه المراجعة، تتم مناقشة الطاقات الحركية والكهرومغناطيسية والحرارية والإشعاعية للأشعة تحت الحمراء. يتم توضيح القضايا والتحديات الحالية المتعلقة بالتطبيقات النموذجية لهذه الطرق لحصاد الطاقة. كما يتم تقديم اقتراحات ومناقشة التقدم المحرز في البحوث المتعلقة بالأجهزة القابلة للزرع. من المتوقع أن تزيد هذه المراجعة من الجهود البحثية لتطوير الأجهزة القابلة للزرع بدون بطارية مع تقليل حجم الفتحة، وانخفاض الطاقة، والكفاءة العالية، ومعدل البيانات العالي، وتحسين الموثوقية والجدوى. بناءً على الأدبيات الحالية، نعتقد أن وصلة الاقتران الحثي هي الطريقة المناسبة لاستخدامها لتشغيل الأجهزة التي لا تحتوي على بطارية. لذلك، في هذه الدراسة، يتم التحقق من كفاءة الطاقة لطريقة الاقتران الحثي بواسطة MATLAB بناءً على القيم المقترحة. من خلال إجراء المزيد من الأبحاث والتحسينات، من المتوقع أن تكون الأجهزة الطبية القابلة للزرع والمحمولة خالية من البطاريات في المستقبل.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioMedical Engineeri...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BioMedical Engineering OnLine
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BioMedical Engineering OnLine
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/23...
    Other literature type . 2014
    Data sources: Datacite
    https://dx.doi.org/10.60692/xc...
    Other literature type . 2014
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    228
    citations228
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioMedical Engineeri...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BioMedical Engineering OnLine
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BioMedical Engineering OnLine
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/23...
      Other literature type . 2014
      Data sources: Datacite
      https://dx.doi.org/10.60692/xc...
      Other literature type . 2014
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Thomas R. Nelson;

    he potential importance of ultrasound-induced bioeffects in the context of patient imaging is an important and as of yet unresolved matter. Although there is no question that the introduction of acoustic energy into a patient has the potential to induce a biological response, the specific mechanisms involved and the underlying physics of energy transfer in a complex biological medium such as tissue remain under investigation. Although there are reports in the scientific literature of observable effects in animal and tissue culture models, reproducible data regarding the response of humans to ultrasound exposure are more difficult to find. Certainly, ultrasound is used for therapeutic applications involving hyperthermia, so it is obvious that at sufficiently high levels a biological effect can be produced. Thus, the dilemma arises: what level is high enough to produce an observable effect? This situation is further complicated by the definition of what the observable effect is. Although heating and charring of tissue is certainly an observable effect, there are other effects occurring primarily on the microscopic, cellular, or subcellular level. Additionally, some effects may not be morphologic but represent alterations in cellular metabolism, blood flow, or neurologic function. There is active research under way trying to elucidate these questions. As results are published in the peer-reviewed literature, we gain a broader overview of the relative risk and potential for harm. It is important that published findings be repeatable and comprehensible in the larger context of previous work. Additionally, it is important that published study designs clearly indicate what was measured and how, so others may both benefit from the results and place them into a reasonable perspective of assessing the importance of the findings. Such precision in information is particularly challenging in the ultrasound bioeffects arena. Although the basic physics of ultrasound interaction are reasonably well understood in simple models, the complexity of biological tissues leaves current models wanting. Well-equipped laboratories having all manner of instrumentation may be hard pressed to make measurements of sufficient precision to accurately reflect true energy deposition and mechanical effects. A greater challenge exists for less well-equipped laboratories having more limited measurement resources. The situation is even more daunting for clinical imaging facilities conducting research involving their human patients for whom a biological effect is observed or a longitudinal study is designed to detect possible effects. Current ultrasonic scanners provide very limited information regarding energy transfer and deposition. In part, this is because such information is hard to come by in a particular experimental configuration or patient from returning echo intensity information. Furthermore, this is complicated by the complexity and nuances of how acoustic energy interacts with the patient in the first place. Because the underlying tissue is heterogeneous, accurate estimation of energy deposition is difficult, particularly when accommo-

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ultrasoun...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Ultrasound in Medicine
    Article . 2005 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Journal of Ultrasound in Medicine
    Other literature type . 2006
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ultrasoun...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Ultrasound in Medicine
      Article . 2005 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Journal of Ultrasound in Medicine
      Other literature type . 2006
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tomasz Hermann; Marian Witalis Dobry;

    Abstract The article presents an approach to assessing human physical models specified in the ISO 10068:2012 standard. The models were compared on the basis of energy analysis, which was conducted in terms of power distribution. Since the models in question have a fully specified internal structure, the investigation focused on power distribution in the models and the total power in the system. The article provides a description of the construction and energy-based modelling of Human-Tool systems. Simulation results obtained during the study were analysed in terms of health risks posed to the tool operator.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive of Mechanica...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Archive of Mechanical Engineering
    Article . 2015 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Archive of Mechanical Engineering
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Archive of Mechanical Engineering
    Article . 2015
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive of Mechanica...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Archive of Mechanical Engineering
      Article . 2015 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Archive of Mechanical Engineering
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Archive of Mechanical Engineering
      Article . 2015
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Robin M. Hochstrasser; Matthew J. Tucker; Ayanjeet Ghosh;

    The CN stretching vibrations of the guanidyl group in the arginine dipeptide side chain are examined by two-dimensional infrared spectroscopy. In D(2)O, the spectra display two distinct diagonal peaks. These nearly degenerate modes undergo ultrafast energy transfer. The energy-transfer rate was determined directly from the 2D-IR spectra to be 1/2.1 ps(-1). The cross peaks in 2D-IR arising from the energy transfer provide a definitive identification of arginine in larger proteins. An example of arginine in the transmembrane protein M2, found in influenza viruses, is given.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The Journal of Physical Chemistry A
    Article . 2011 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    45
    citations45
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      The Journal of Physical Chemistry A
      Article . 2011 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
23 Research products (1 rule applied)
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Qian, Feng;

    The urgent need for a clean and sustainable power supply for wireless sensor nodes and low-power electronics in various monitoring systems and the Internet of Things has led to an explosion of research in substitute energy technologies. Traditional batteries are still the most widely used power source for these applications currently but have been blamed for chemical pollution, high maintenance cost, bulky volume, and limited energy capacity. Ambient energy in different forms such as vibration, movement, heat, wind, and waves otherwise wasted can be converted into usable electricity using proper transduction mechanisms to power sensors and low-power devices or charge rechargeable batteries. This dissertation focuses on the design, modeling, optimization, prototype, and testing of novel piezoelectric energy harvesters for extracting energy from human walking, bio-inspired bi-stable motion, and torsional vibration as an alternative power supply for wireless monitoring systems. To provide a sustainable power supply for health care monitoring systems, a piezoelectric footwear harvester is developed and embedded inside a shoe heel for scavenging energy from human walking. The harvester comprises of multiple 33-mode piezoelectric stacks within single-stage force amplification frames sandwiched between two heel-shaped aluminum plates taking and reallocating the dynamic force at the heel. The single-stage force amplification frame is designed and optimized to transmit, redirect, and amplify the heel-strike force to the inner piezoelectric stack. An analytical model is developed and validated to predict precisely the electromechanical coupling behavior of the harvester. A symmetric finite element model is established to facilitate the mesh of the transducer unit based on a material equivalent model that simplifies the multilayered piezoelectric stack into a bulk. The symmetric FE model is experimentally validated and used for parametric analysis of the single-stage force amplification frame for a large force amplification factor and power output. The results show that an average power output of 9.3 mW/shoe and a peak power output of 84.8 mW are experimentally achieved at the walking speed of 3.0 mph (4.8 km/h). To further improve the power output, a two-stage force amplification compliant mechanism is designed and incorporated into the footwear energy harvester, which could amplify the dynamic force at the heel twice before applied to the inner piezoelectric stacks. An average power of 34.3 mW and a peak power of 110.2 mW were obtained under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. A comparison study demonstrated that the proposed two-stage piezoelectric harvester has a much larger power output than the state-of-the-art results in the literature. A novel bi-stable piezoelectric energy harvester inspired by the rapid shape transition of the Venus flytrap leaves is proposed, modeled and experimentally tested for the purpose of energy harvesting from broadband frequency vibrations. The harvester consists of a piezoelectric macro fiber composite (MFC) transducer, a tip mass, and two sub-beams with bending and twisting deformations created by in-plane pre-displacement constraints using rigid tip-mass blocks. Different from traditional ways to realize bi-stability using nonlinear magnetic forces or residual stress in laminate composites, the proposed bio-inspired bi-stable piezoelectric energy harvester takes advantage of the mutual self-constraint at the free ends of the two cantilever sub-beams with a pre-displacement. This mutual pre-displacement constraint bi-directionally curves the two sub-beams in two directions inducing higher mechanical potential energy. The nonlinear dynamics of the bio-inspired bi-stable piezoelectric energy harvester is investigated under sweeping frequency and harmonic excitations. The results show that the sub-beams of the harvester experience local vibrations, including broadband frequency components during the snap-through, which is desirable for large power output. An average power output of 0.193 mW for a load resistance of 8.2 kΩ is harvested at the excitation frequency of 10 Hz and amplitude of 4.0 g. Torsional vibration widely exists in mechanical engineering but has not yet been well exploited for energy harvesting to provide a sustainable power supply for structural health monitoring systems. A torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer is developed in this dissertation to look into the feasibility of harvesting energy from oil drilling shaft for powering downhole sensors. A theoretical model of the torsional vibration piezoelectric energy harvester is derived and experimentally verified to be capable of characterizing the electromechanical coupling system and predicting the electrical responses. The position of the piezoelectric transducer on the surface of the shaft is parameterized by two variables that are optimized to maximize the power output. Approximate expressions of the voltage and power are derived by simplifying the theoretical model, which gives predictions in good agreement with analytical solutions. Based on the derived approximate expression, physical interpretations of the implicit relationship between the power output and the position parameters of the piezoelectric transducer are given. Doctor of Philosophy Wireless monitoring systems with embedded wireless sensor nodes have been widely applied in human health care, structural health monitoring, home security, environment assessment, and wild animal tracking. One distinctive advantage of wireless monitoring systems is to provide unremitting, wireless monitoring of interesting parameters, and data transmission for timely decision making. However, most of these systems are powered by traditional batteries with finite energy capacity, which need periodic replacement or recharge, resulting in high maintenance costs, interruption of service, and potential environmental pollution. On the other hand, abundant energy in different forms such as solar, wind, heat, and vibrations, diffusely exists in ambient environments surrounding wireless monitoring systems which would be otherwise wasted could be converted into usable electricity by proper energy transduction mechanisms. Energy harvesting, also referred to as energy scavenging and energy conversion, is a technology that uses different energy transduction mechanisms, including electromagnetic, photovoltaic, piezoelectric, electrostatic, triboelectric, and thermoelectric, to convert ambient energy into electricity. Compared with traditional batteries, energy harvesting could provide a continuous and sustainable power supply or directly recharge storage devices like batteries and capacitors without interrupting operation. Among these energy transduction mechanisms, piezoelectric materials have been extensively explored for small-size and low-power generation due to their merits of easy shaping, high energy density, flexible design, and low maintenance cost. Piezoelectric transducers convert mechanical energy induced by dynamic strain into electrical charges through the piezoelectric effect. This dissertation presents novel piezoelectric energy harvesters, including design, modeling, prototyping, and experimental tests for energy harvesting from human walking, broadband bi-stable nonlinear vibrations, and torsional vibrations for powering wireless monitoring systems. A piezoelectric footwear energy harvester is developed and embedded inside a shoe heel for scavenging energy from heel striking during human walking to provide a power supply for wearable sensors embedded in health monitoring systems. The footwear energy harvester consists of multiple piezoelectric stacks, force amplifiers, and two heel-shaped metal plates taking dynamic forces at the heel. The force amplifiers are designed and optimized to redirect and amplify the dynamic force transferred from the heel-shaped plates and then applied to the inner piezoelectric stacks for large power output. An analytical model and a finite model were developed to simulate the electromechanical responses of the harvester. The footwear harvester was tested on a treadmill under different walking speeds to validate the numerical models and evaluate the energy generation performance. An average power output of 9.3 mW/shoe and a peak power output of 84.8 mW are experimentally achieved at the walking speed of 3.0 mph (4.8 km/h). A two-stage force amplifier is designed later to improve the power output further. The dynamic force at the heel is amplified twice by the two-stage force amplifiers before applied to the piezoelectric stacks. An average power output of 34.3 mW and a peak power output of 110.2 mW were obtained from the harvester with the two-stage force amplifiers. A bio-inspired bi-stable piezoelectric energy harvester is designed, prototyped, and tested to harvest energy from broadband vibrations induced by animal motions and fluid flowing for the potential applications of self-powered fish telemetry tags and bird tags. The harvester consists of a piezoelectric macro fiber composite (MFC) transducer, a tip mass, and two sub-beams constrained at the free ends by in-plane pre-displacement, which bends and twists the two sub-beams and consequently creates curvatures in both length and width directions. The bi-direction curvature design makes the cantilever beam have two stable states and one unstable state, which is inspired by the Venus flytrap that could rapidly change its leaves from the open state to the close state to trap agile insects. This rapid shape transition of the Venus flytrap, similar to the vibration of the harvester from one stable state to the other, is accompanied by a large energy release that could be harvested. Detailed design steps and principles are introduced, and a prototype is fabricated to demonstrate and validate the concept. The energy harvesting performance of the harvester is evaluated at different excitation levels. Finally, a piezoelectric energy harvester is developed, analytically modeled, and validated for harvesting energy from the rotation of an oil drilling shaft to seek a continuous power supply for downhole sensors in oil drilling monitoring systems. The position of the piezoelectric transducer on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. Approximate expressions of voltage and power of the torsional vibration piezoelectric energy harvester are derived from the theoretical model. The implicit relationship between the power output and the two position parameters of the transducer is revealed and physically interpreted based on the approximate power expression. Those findings offer a good reference for the practical design of the torsional vibration energy harvesting system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Doctoral thesis . 2020
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Doctoral thesis . 2020
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Amar Miglani; Matthew Germroth; Kristina A. LaPointe; Shaun A. Nguyen; +1 Authors

    AbstractObjectiveTo determine if simultaneous administration of acoustic vibration and oscillating expiratory pressure affects the severity of facial pain among patients with complaint of “sinus headache”.MethodsThis is a prospective single‐arm observational study performed at a tertiary care medical center. Subjects with complaint of sinus headache without evidence of chronic rhinosinusitis on exam or computed tomography participated in a clinical study applying simultaneous acoustic vibrations and positive expiratory pressure to the nasal cavity twice daily over 4 weeks. Efficacy was assessed using three validated pain metrics—pain visual analog scale (VAS), brief pain inventory‐short form (BPI‐SF), and McGill pain questionnaire‐short form (MPQ‐SF). Device safety and patient satisfaction were also assessed using questionnaires.ResultsTwenty‐nine patients (mean age 49 years, 55% female) completed the study without any major adverse events. At the 4 week follow‐up, facial pain VAS improved from mean ± SD of 59.6 ± 15.7 to 34.6 ± 21.7 (p < .001), BPI mean pain (mean ± standard deviation) improved from 4.4 ± 2.0 to 2.9 ± 1.9 (p = .007), and MPQ‐SF total improved from 12.2 ± 6.5 to 6.5 ± 5.2 (p < .001) with approximately 70% of patients achieving a minimal clinically important difference (MCID) across all metrics. Additionally, pain VAS was assessed 5 min after a single use at baseline with significant improvement (p < .001). Eighty‐six percent of subjects would both use device again and recommend it to others.ConclusionsSimultaneous administration of acoustic vibration and oscillating expiratory pressure appears to be a safe treatment for sinus headaches in patients without objective evidence of chronic sinusitis. Results from this initial study are promising with regard to efficacy in treatment of sinus headaches but will require further study.Level of evidence2c.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Laryngoscope Investi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Laryngoscope Investigative Otolaryngology
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Laryngoscope Investi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Laryngoscope Investigative Otolaryngology
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Huan-Chun Lin; Wan-Ting Hung; Shih-Yuan Chen; Tzu-Ming Liu; +6 Authors

    AbstractVirus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article . 2015 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article . 2015 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    62
    citations62
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article . 2015 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article . 2015 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: V G, Suvorov; A E, Shelekhova;

    The study was aimed to reveal efficiency of extracorporeal shock-wave therapy in complex treatment of vibration disease patients. Examination covered 92 patients with varying severity of vibration disease, 58 of which received extracorporeal shock-wave therapy with Piezo Wave device produced by Richard Wolf in addition to traditional treatment. The treatment efficiency was evaluated through its influence on intensity and regression of pain syndrome. Comparative analysis showed that extracorporeal shockwave therapy in the treatment complex considerably increases efficiency and leads to earlier and more stable regression of pain in distal parts of hands. Two variants of chronic pain response to extracorporeal shock-wave therapy were revealed. Marked analgetic potential, good tolerance and stability of the results obtained enable to recommend extracorporeal shock-wave therapy in rehabilitation complex for vibration disease patients.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Kuznetsova, E.V.; Katerinin, S.P.;

    The economic crisis, the coronavirus infection pandemic and climate change on Earth have one source of origin - a change in vibrations of a planetary scale - the Sun, Moon, Earth, respectively, there should be a single method for solving these problems. In this work, through the methodological and historical aspects, the relationship between economic development, coronavirus and climate change is investigated, and a practical example of working with the water resources of the Aral Sea and the climate of adjacent territories is presented, and the possibility of simultaneously solving these issues is shown. It is concluded that human energy-informational activity makes it possible to develop a crisisresistant economy, prevent epidemics and pandemics, and form the climate of a certain area.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Hailong Chen; Jiebo Li; Hongtao Bian; Junrong Zheng; +1 Authors

    The donor/acceptor energy mismatch and vibrational coupling strength dependences of interionic vibrational energy transfer kinetics in electrolyte aqueous solutions were investigated with ultrafast multiple-dimensional vibrational spectroscopy. An analytical equation derived from the Fermi's Golden rule that correlates molecular structural parameters and vibrational energy transfer kinetics was found to be able to describe the intermolecular mode specific vibrational energy transfer. Under the assumption of the dipole-dipole approximation, the distance between anions in the aqueous solutions was obtained from the vibrational energy transfer measurements, confirmed with measurements on the corresponding crystalline samples. The result demonstrates that the mode-specific vibrational energy transfer method holds promise as an angstrom molecular ruler.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    53
    citations53
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mahammad A. Hannan; Aini Hussain; Saad Mutashar; Saad Mutashar; +1 Authors

    Le développement des dispositifs implantés est essentiel en raison de leur effet direct sur la vie et la sécurité de l'humanité. Cet article présente les enjeux et défis actuels liés à toutes les méthodes utilisées pour récolter l'énergie pour les dispositifs biomédicaux implantables. Les avantages, les inconvénients et les tendances futures de chaque méthode sont discutés. Le concept de récupération d'énergie à partir de sources environnementales et de mouvement du corps humain pour les dispositifs implantables a acquis une nouvelle pertinence. Dans cette revue, les énergies radiantes cinétiques, électromagnétiques, thermiques et infrarouges de récolte sont discutées. Les problèmes et défis actuels liés aux applications typiques de ces méthodes de récupération d'énergie sont illustrés. Des suggestions et des discussions sur les progrès de la recherche sur les dispositifs implantables sont également fournies. Cette revue devrait accroître les efforts de recherche pour développer des dispositifs implantables sans batterie avec une taille de trou réduite, une faible puissance, un rendement élevé, un débit de données élevé et une fiabilité et une faisabilité améliorées. Sur la base de la littérature actuelle, nous pensons que la liaison de couplage inductif est la méthode appropriée à utiliser pour alimenter les appareils sans batterie. Par conséquent, dans cette étude, l'efficacité énergétique de la méthode de couplage inductif est validée par Matlab sur la base des valeurs suggérées. En poursuivant les recherches et les améliorations, on s'attend à ce que les dispositifs médicaux implantables et portables soient à l'avenir exempts de piles. El desarrollo de dispositivos implantados es esencial debido a su efecto directo en la vida y la seguridad de la humanidad. Este documento presenta los problemas y desafíos actuales relacionados con todos los métodos utilizados para recolectar energía para dispositivos biomédicos implantables. Se discuten las ventajas, desventajas y tendencias futuras de cada método. El concepto de recolección de energía de fuentes ambientales y movimiento del cuerpo humano para dispositivos implantables ha ganado una nueva relevancia. En esta revisión, se discuten las energías radiantes cinéticas, electromagnéticas, térmicas e infrarrojas de cosecha. Se ilustran los problemas y desafíos actuales relacionados con las aplicaciones típicas de estos métodos para la recolección de energía. También se proporcionan sugerencias y discusiones sobre el progreso de la investigación sobre dispositivos implantables. Se espera que esta revisión aumente los esfuerzos de investigación para desarrollar dispositivos implantables sin batería con un tamaño de orificio reducido, baja potencia, alta eficiencia, alta velocidad de datos y mayor confiabilidad y viabilidad. Basándonos en la literatura actual, creemos que el enlace de acoplamiento inductivo es el método adecuado para alimentar los dispositivos sin batería. Por lo tanto, en este estudio, la eficiencia energética del método de acoplamiento inductivo es validada por MATLAB en función de los valores sugeridos. Mediante una mayor investigación y mejoras, en el futuro se espera que los dispositivos médicos implantables y portátiles estén libres de baterías. The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. يعد تطوير الأجهزة المزروعة أمرًا ضروريًا بسبب تأثيرها المباشر على حياة وسلامة البشرية. تعرض هذه الورقة القضايا والتحديات الحالية المتعلقة بجميع الطرق المستخدمة لحصاد الطاقة للأجهزة الطبية الحيوية القابلة للزرع. تتم مناقشة مزايا كل طريقة وعيوبها واتجاهاتها المستقبلية. اكتسب مفهوم حصاد الطاقة من المصادر البيئية وحركة جسم الإنسان للأجهزة القابلة للزرع أهمية جديدة. في هذه المراجعة، تتم مناقشة الطاقات الحركية والكهرومغناطيسية والحرارية والإشعاعية للأشعة تحت الحمراء. يتم توضيح القضايا والتحديات الحالية المتعلقة بالتطبيقات النموذجية لهذه الطرق لحصاد الطاقة. كما يتم تقديم اقتراحات ومناقشة التقدم المحرز في البحوث المتعلقة بالأجهزة القابلة للزرع. من المتوقع أن تزيد هذه المراجعة من الجهود البحثية لتطوير الأجهزة القابلة للزرع بدون بطارية مع تقليل حجم الفتحة، وانخفاض الطاقة، والكفاءة العالية، ومعدل البيانات العالي، وتحسين الموثوقية والجدوى. بناءً على الأدبيات الحالية، نعتقد أن وصلة الاقتران الحثي هي الطريقة المناسبة لاستخدامها لتشغيل الأجهزة التي لا تحتوي على بطارية. لذلك، في هذه الدراسة، يتم التحقق من كفاءة الطاقة لطريقة الاقتران الحثي بواسطة MATLAB بناءً على القيم المقترحة. من خلال إجراء المزيد من الأبحاث والتحسينات، من المتوقع أن تكون الأجهزة الطبية القابلة للزرع والمحمولة خالية من البطاريات في المستقبل.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioMedical Engineeri...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BioMedical Engineering OnLine
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BioMedical Engineering OnLine
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/23...
    Other literature type . 2014
    Data sources: Datacite
    https://dx.doi.org/10.60692/xc...
    Other literature type . 2014
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    228
    citations228
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioMedical Engineeri...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BioMedical Engineering OnLine
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BioMedical Engineering OnLine
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/23...
      Other literature type . 2014
      Data sources: Datacite
      https://dx.doi.org/10.60692/xc...
      Other literature type . 2014
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Thomas R. Nelson;

    he potential importance of ultrasound-induced bioeffects in the context of patient imaging is an important and as of yet unresolved matter. Although there is no question that the introduction of acoustic energy into a patient has the potential to induce a biological response, the specific mechanisms involved and the underlying physics of energy transfer in a complex biological medium such as tissue remain under investigation. Although there are reports in the scientific literature of observable effects in animal and tissue culture models, reproducible data regarding the response of humans to ultrasound exposure are more difficult to find. Certainly, ultrasound is used for therapeutic applications involving hyperthermia, so it is obvious that at sufficiently high levels a biological effect can be produced. Thus, the dilemma arises: what level is high enough to produce an observable effect? This situation is further complicated by the definition of what the observable effect is. Although heating and charring of tissue is certainly an observable effect, there are other effects occurring primarily on the microscopic, cellular, or subcellular level. Additionally, some effects may not be morphologic but represent alterations in cellular metabolism, blood flow, or neurologic function. There is active research under way trying to elucidate these questions. As results are published in the peer-reviewed literature, we gain a broader overview of the relative risk and potential for harm. It is important that published findings be repeatable and comprehensible in the larger context of previous work. Additionally, it is important that published study designs clearly indicate what was measured and how, so others may both benefit from the results and place them into a reasonable perspective of assessing the importance of the findings. Such precision in information is particularly challenging in the ultrasound bioeffects arena. Although the basic physics of ultrasound interaction are reasonably well understood in simple models, the complexity of biological tissues leaves current models wanting. Well-equipped laboratories having all manner of instrumentation may be hard pressed to make measurements of sufficient precision to accurately reflect true energy deposition and mechanical effects. A greater challenge exists for less well-equipped laboratories having more limited measurement resources. The situation is even more daunting for clinical imaging facilities conducting research involving their human patients for whom a biological effect is observed or a longitudinal study is designed to detect possible effects. Current ultrasonic scanners provide very limited information regarding energy transfer and deposition. In part, this is because such information is hard to come by in a particular experimental configuration or patient from returning echo intensity information. Furthermore, this is complicated by the complexity and nuances of how acoustic energy interacts with the patient in the first place. Because the underlying tissue is heterogeneous, accurate estimation of energy deposition is difficult, particularly when accommo-

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ultrasoun...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Ultrasound in Medicine
    Article . 2005 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Journal of Ultrasound in Medicine
    Other literature type . 2006
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Ultrasoun...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Ultrasound in Medicine
      Article . 2005 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Journal of Ultrasound in Medicine
      Other literature type . 2006
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tomasz Hermann; Marian Witalis Dobry;

    Abstract The article presents an approach to assessing human physical models specified in the ISO 10068:2012 standard. The models were compared on the basis of energy analysis, which was conducted in terms of power distribution. Since the models in question have a fully specified internal structure, the investigation focused on power distribution in the models and the total power in the system. The article provides a description of the construction and energy-based modelling of Human-Tool systems. Simulation results obtained during the study were analysed in terms of health risks posed to the tool operator.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive of Mechanica...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Archive of Mechanical Engineering
    Article . 2015 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Archive of Mechanical Engineering
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Archive of Mechanical Engineering
    Article . 2015
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive of Mechanica...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Archive of Mechanical Engineering
      Article . 2015 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Archive of Mechanical Engineering
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Archive of Mechanical Engineering
      Article . 2015
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Robin M. Hochstrasser; Matthew J. Tucker; Ayanjeet Ghosh;

    The CN stretching vibrations of the guanidyl group in the arginine dipeptide side chain are examined by two-dimensional infrared spectroscopy. In D(2)O, the spectra display two distinct diagonal peaks. These nearly degenerate modes undergo ultrafast energy transfer. The energy-transfer rate was determined directly from the 2D-IR spectra to be 1/2.1 ps(-1). The cross peaks in 2D-IR arising from the energy transfer provide a definitive identification of arginine in larger proteins. An example of arginine in the transmembrane protein M2, found in influenza viruses, is given.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The Journal of Physical Chemistry A
    Article . 2011 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    45
    citations45
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      The Journal of Physical Chemistry A
      Article . 2011 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.