- home
- Advanced Search
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2021Embargo end date: 06 Jan 2021Publisher:Mendeley Authors: Junlian Gao (10001076);This data included the detailed mathematical description of the model and all the data adopted in the model
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mgy5mx5t8r.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mgy5mx5t8r.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 06 Jan 2021Publisher:Mendeley Authors: Junlian Gao (10001076);This data included the detailed mathematical description of the model and all the data adopted in the model
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mgy5mx5t8r.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mgy5mx5t8r.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Elsevier BV Authors: Javier Farfan; Alena Lohrmann; Henrik Saxén;One commonly-used argument against fluctuating renewables is their unpredictability. In contrast, thermal power generation and hydropower are regularly presented as reliable and dispatchable. However, droughts and floods can render useless the share of the power generation infrastructure that directly depends on freshwater. In this work, the global power sector is analysed from an energy-water nexus perspective to evaluate its reliability in case of severe water scarcity on a per-power plant basis, proposing a new method for combining it with water stress scores. At a country level, known individual thermal and hydropower plants are paired with regional water stress projections from 2020 to 2030 and their water source as a bottom-up approach to account for the capacities at risk and identify the points where water dependence could render a power system unreliable. The results show that, globally, about 65 % of generating capacities are directly freshwater-dependent. Moreover, the share of capacities placed in the low-resiliency group increases from 9 % of the total installed in 2020 to over 24 % in 2030 in all scenarios. The findings could help guide the development of the global power sector towards a less water-dependent system and accelerate the deployment of low water-demand power generation technologies. Smart Energy, 14 ISSN:2666-9552
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segy.2024.100142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segy.2024.100142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Elsevier BV Authors: Javier Farfan; Alena Lohrmann; Henrik Saxén;One commonly-used argument against fluctuating renewables is their unpredictability. In contrast, thermal power generation and hydropower are regularly presented as reliable and dispatchable. However, droughts and floods can render useless the share of the power generation infrastructure that directly depends on freshwater. In this work, the global power sector is analysed from an energy-water nexus perspective to evaluate its reliability in case of severe water scarcity on a per-power plant basis, proposing a new method for combining it with water stress scores. At a country level, known individual thermal and hydropower plants are paired with regional water stress projections from 2020 to 2030 and their water source as a bottom-up approach to account for the capacities at risk and identify the points where water dependence could render a power system unreliable. The results show that, globally, about 65 % of generating capacities are directly freshwater-dependent. Moreover, the share of capacities placed in the low-resiliency group increases from 9 % of the total installed in 2020 to over 24 % in 2030 in all scenarios. The findings could help guide the development of the global power sector towards a less water-dependent system and accelerate the deployment of low water-demand power generation technologies. Smart Energy, 14 ISSN:2666-9552
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segy.2024.100142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segy.2024.100142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection 2020Publisher:Eawag: Swiss Federal Institute of Aquatic Science and Technology Authors: Hadengue, Bruno; Scheidegger, Andreas; Morgenroth, Eberhard; Larsen, Tove A.;doi: 10.25678/0002b1
This package provides material related to the paper`B. Hadengue, A. Scheidegger, E. Morgenroth, T.A. Larsen, Modeling the Water-Energy Nexus in Households, Energy & Buildings (2020), doi: https://doi.org/10.1016/j.enbuild.2020.110262`Various scripts and code, as well as raw results, are included.### Paper AbstractOne third of the global carbon emissions are emitted by the building sector. Over the last decades, space heating loads have decreased in modern buildings, and domestic hot water (DHW) is now oftentimes the largest energy consumer in the household. We developed the WaterHub modeling framework to assess the potential of technologies or measures targeting DHW energy demand. The framework combines process-based technological models and stochastic water demand modeling in a modular way to allow for holistic simulations of complex DHW systems. In two rigorous tests of the modeling framework, we demonstrated the importance of water consumption dynamics in the modeling of DHW systems, showing that static modeling leads to underestimated heat losses and wrong energy consumption predictions. In an exemplary case study, we identified and quantified the synergistic interactions between water boiler temperatures and a drain water heat recovery device, demonstrating the strength of this methodology for optimizing strategies targeting DHW systems. With its modular structure, this open-source modeling framework can be extended to include any DHW-related technology, providing a useful common platform for collaboration between technology developers and water experts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25678/0002b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25678/0002b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection 2020Publisher:Eawag: Swiss Federal Institute of Aquatic Science and Technology Authors: Hadengue, Bruno; Scheidegger, Andreas; Morgenroth, Eberhard; Larsen, Tove A.;doi: 10.25678/0002b1
This package provides material related to the paper`B. Hadengue, A. Scheidegger, E. Morgenroth, T.A. Larsen, Modeling the Water-Energy Nexus in Households, Energy & Buildings (2020), doi: https://doi.org/10.1016/j.enbuild.2020.110262`Various scripts and code, as well as raw results, are included.### Paper AbstractOne third of the global carbon emissions are emitted by the building sector. Over the last decades, space heating loads have decreased in modern buildings, and domestic hot water (DHW) is now oftentimes the largest energy consumer in the household. We developed the WaterHub modeling framework to assess the potential of technologies or measures targeting DHW energy demand. The framework combines process-based technological models and stochastic water demand modeling in a modular way to allow for holistic simulations of complex DHW systems. In two rigorous tests of the modeling framework, we demonstrated the importance of water consumption dynamics in the modeling of DHW systems, showing that static modeling leads to underestimated heat losses and wrong energy consumption predictions. In an exemplary case study, we identified and quantified the synergistic interactions between water boiler temperatures and a drain water heat recovery device, demonstrating the strength of this methodology for optimizing strategies targeting DHW systems. With its modular structure, this open-source modeling framework can be extended to include any DHW-related technology, providing a useful common platform for collaboration between technology developers and water experts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25678/0002b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25678/0002b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Carlino, Angelo; Giuliani, Matteo; Zamberletti, Patrizia; Recanati, Francesca; Castelletti, Andrea;The dataset is composed by 12 files reporting the water availability and temperature scenarios for 167 water-dependent power plants in the Danube river basin and the Iberian Peninsula. The dataset is split into multiple files by region (Danube river basin (Danube) or Iberian Peninsula (IP)), variable (discharge or river temperature) and scenario (baseline, RCP26 or RCP85) considered. The title of each file is composed by the variable reported (discharge or river temperature) and the scenario considered (baseline: 1951-2004, RCP26: 2006-2100, RCP85: 2006-2100). The first row is used to report the fields considered: the first three columns report the day, the month and the year. The remaining columns report the name of the power plant considered in each region (57 for the Daube river basin and 110 for the Iberian Peninsula). In each row day, month, year and streamflow or river temperature values are reported for every water-dependent power plant examined in the study. Temperature is reported as daily average temperature in degrees Celsius (°C) while water availability is reported as daily average streamflow in cubic meters per second (m^3/s). For a description on how these files were obtained, please refer to https://doi.org/10.2777/135510. This dataset was produced in the context of the project "US-EU integrated power and water systems modelling" funded by the European Commission Directorate General for Research and Innovation, Directorate G. - Energy, Unit G3 - Renewable Energy Sources, PP-06161-2017.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4339120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4339120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Carlino, Angelo; Giuliani, Matteo; Zamberletti, Patrizia; Recanati, Francesca; Castelletti, Andrea;The dataset is composed by 12 files reporting the water availability and temperature scenarios for 167 water-dependent power plants in the Danube river basin and the Iberian Peninsula. The dataset is split into multiple files by region (Danube river basin (Danube) or Iberian Peninsula (IP)), variable (discharge or river temperature) and scenario (baseline, RCP26 or RCP85) considered. The title of each file is composed by the variable reported (discharge or river temperature) and the scenario considered (baseline: 1951-2004, RCP26: 2006-2100, RCP85: 2006-2100). The first row is used to report the fields considered: the first three columns report the day, the month and the year. The remaining columns report the name of the power plant considered in each region (57 for the Daube river basin and 110 for the Iberian Peninsula). In each row day, month, year and streamflow or river temperature values are reported for every water-dependent power plant examined in the study. Temperature is reported as daily average temperature in degrees Celsius (°C) while water availability is reported as daily average streamflow in cubic meters per second (m^3/s). For a description on how these files were obtained, please refer to https://doi.org/10.2777/135510. This dataset was produced in the context of the project "US-EU integrated power and water systems modelling" funded by the European Commission Directorate General for Research and Innovation, Directorate G. - Energy, Unit G3 - Renewable Energy Sources, PP-06161-2017.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4339120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4339120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 ParaguayAuthors: Pereira, Gabriel; González Osorio, Arturo Ramón; Ríos, Richard;handle: 20.500.14066/3708
Water needs energy and energy needs water. In this context, the optimization of the use of each of these variables is a fundamental goal to tackle climate change and achieve sustainable development. The water-energy nexus has gained relevance in the literature through the study of their dependencies, with the objective of increasing their synergies and reducing their trade-offs. Moreover, the nexus approach has proven to be a useful methodology to evaluate the impact of a variable (or group of variables) in a specific system or network, as for example, the intricate network of the Sustainable Development Goals (SDG). The main purpose of this study is to improve the understanding of the water-energy nexus through a comprehensive literature review, based on the influence of the publications (citation-based approach). The methodology allows the identification of the top 50 most influential papers related to the water-energy nexus, based on the number of citations that it has, since its publication in a scientific journal. Additionally, it has been analyzed the main journals in this topic, the context and characteristics of the publications (geographical locations and study design), most cited authors, the timeline and evolution of the literature. Finally, the study seeks to improve the comprehension of the relevance of the dependencies and interactions between these variables, added to their fundamental roles in the whole system. CONACYT - Consejo Nacional de Ciencia y Tecnología PROCIENCIA
Repositorio Instituc... arrow_drop_down Repositorio Institucional CONACYTOther ORP type . 2020Data sources: Repositorio Institucional CONACYTadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10722::b19ee0c54203253e9222a59f06c70928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Repositorio Instituc... arrow_drop_down Repositorio Institucional CONACYTOther ORP type . 2020Data sources: Repositorio Institucional CONACYTadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10722::b19ee0c54203253e9222a59f06c70928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 ParaguayAuthors: Pereira, Gabriel; González Osorio, Arturo Ramón; Ríos, Richard;handle: 20.500.14066/3708
Water needs energy and energy needs water. In this context, the optimization of the use of each of these variables is a fundamental goal to tackle climate change and achieve sustainable development. The water-energy nexus has gained relevance in the literature through the study of their dependencies, with the objective of increasing their synergies and reducing their trade-offs. Moreover, the nexus approach has proven to be a useful methodology to evaluate the impact of a variable (or group of variables) in a specific system or network, as for example, the intricate network of the Sustainable Development Goals (SDG). The main purpose of this study is to improve the understanding of the water-energy nexus through a comprehensive literature review, based on the influence of the publications (citation-based approach). The methodology allows the identification of the top 50 most influential papers related to the water-energy nexus, based on the number of citations that it has, since its publication in a scientific journal. Additionally, it has been analyzed the main journals in this topic, the context and characteristics of the publications (geographical locations and study design), most cited authors, the timeline and evolution of the literature. Finally, the study seeks to improve the comprehension of the relevance of the dependencies and interactions between these variables, added to their fundamental roles in the whole system. CONACYT - Consejo Nacional de Ciencia y Tecnología PROCIENCIA
Repositorio Instituc... arrow_drop_down Repositorio Institucional CONACYTOther ORP type . 2020Data sources: Repositorio Institucional CONACYTadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10722::b19ee0c54203253e9222a59f06c70928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Repositorio Instituc... arrow_drop_down Repositorio Institucional CONACYTOther ORP type . 2020Data sources: Repositorio Institucional CONACYTadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10722::b19ee0c54203253e9222a59f06c70928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2015 United StatesAuthors: Gold, Gary M.;handle: 2152/31906
text ; Water stress is a worldwide reality. Planners and managers of water resources around the world are tasked with finding new, creative, and innovative solutions to challenges posed by growing populations and declining water supplies. Securing safe drinking water, however, has impacts beyond the water sector. In particular, the connection between energy and water must be carefully considered to avoid unwelcome increases in energy consumption as a result of new water management strategies. One strategy that is gaining increasing attention is desalination of brackish groundwater. However, desalination is an energy-intensive process and could have negative impacts in the energy sector if conventional approaches are used. Relying on fossil fuels for desalination could drive up carbon dioxide emissions associated with water treatment and increase the cost required to produce drinking water. Integrating desalination with renewable power sources such as wind and so- lar energy can mitigate concerns regarding the energy intensity of desalination. By coupling water treatment with non-carbon emitting sources of power, it is possible to meet growing water demands in a sustainable manner. At the same time, water pro- duction offers an opportunity to address problems associated with the intermittent nature of wind and solar power production. Desalination is a time-flexible process that pairs well with wind and solar power, two sources of energy that are limited in application by their daily and seasonal variability. Integrating desalination with wind and solar power offers a solution to energetic challenges of water production while using wind and solar power for desalination offers a solution to challenges associated with the intermittent nature of renewable power. Additionally, utilizing photovoltaic-thermal (PVT) solar modules in an inte- grated facility could be advantageous to both the water and solar power production processes. Brackish groundwater, which is at a relatively cool temperature, can be used to cool ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2152/31906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2152/31906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2015 United StatesAuthors: Gold, Gary M.;handle: 2152/31906
text ; Water stress is a worldwide reality. Planners and managers of water resources around the world are tasked with finding new, creative, and innovative solutions to challenges posed by growing populations and declining water supplies. Securing safe drinking water, however, has impacts beyond the water sector. In particular, the connection between energy and water must be carefully considered to avoid unwelcome increases in energy consumption as a result of new water management strategies. One strategy that is gaining increasing attention is desalination of brackish groundwater. However, desalination is an energy-intensive process and could have negative impacts in the energy sector if conventional approaches are used. Relying on fossil fuels for desalination could drive up carbon dioxide emissions associated with water treatment and increase the cost required to produce drinking water. Integrating desalination with renewable power sources such as wind and so- lar energy can mitigate concerns regarding the energy intensity of desalination. By coupling water treatment with non-carbon emitting sources of power, it is possible to meet growing water demands in a sustainable manner. At the same time, water pro- duction offers an opportunity to address problems associated with the intermittent nature of wind and solar power production. Desalination is a time-flexible process that pairs well with wind and solar power, two sources of energy that are limited in application by their daily and seasonal variability. Integrating desalination with wind and solar power offers a solution to energetic challenges of water production while using wind and solar power for desalination offers a solution to challenges associated with the intermittent nature of renewable power. Additionally, utilizing photovoltaic-thermal (PVT) solar modules in an inte- grated facility could be advantageous to both the water and solar power production processes. Brackish groundwater, which is at a relatively cool temperature, can be used to cool ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2152/31906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2152/31906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Cardoso, Pedro;doi: 10.17632/9ztwrrtnjz
The presented tables compile all water-related evaluation criteria of the analysed methodologies and rate them by importance for a future approach. This rating aims to rank the criteria by the relevance to be included in a future dedicated water-energy nexus evaluation performance methodology. For this criteria rating, through all compared methodologies it is used the following symbology: (+++) very important criteria that will be included in the future methodology; (++) Important criteria that can be included, in the future methodology, with few adaptations; (+) Relevant criteria that can be included, in the future methodology, with extensive adaptations; (-) Irrelevant criteria for the future methodology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9ztwrrtnjz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9ztwrrtnjz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Cardoso, Pedro;doi: 10.17632/9ztwrrtnjz
The presented tables compile all water-related evaluation criteria of the analysed methodologies and rate them by importance for a future approach. This rating aims to rank the criteria by the relevance to be included in a future dedicated water-energy nexus evaluation performance methodology. For this criteria rating, through all compared methodologies it is used the following symbology: (+++) very important criteria that will be included in the future methodology; (++) Important criteria that can be included, in the future methodology, with few adaptations; (+) Relevant criteria that can be included, in the future methodology, with extensive adaptations; (-) Irrelevant criteria for the future methodology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9ztwrrtnjz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9ztwrrtnjz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 24 Mar 2021Publisher:Zenodo Authors: Peer, Rebecca A.M.; Chini, Christopher M.;This descriptor contains datasets and scripts used for the analysis of global water and carbon footprints of electricity from 1990 to 2018. Here we present the scripts used for data collection, cleaning, and analysis as well as the completed databases of country, regional, and continental-scale water and carbon footprints over the 29-year period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4560776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4560776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 24 Mar 2021Publisher:Zenodo Authors: Peer, Rebecca A.M.; Chini, Christopher M.;This descriptor contains datasets and scripts used for the analysis of global water and carbon footprints of electricity from 1990 to 2018. Here we present the scripts used for data collection, cleaning, and analysis as well as the completed databases of country, regional, and continental-scale water and carbon footprints over the 29-year period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4560776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4560776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2017 United Kingdom, GermanyPublisher:Routledge Bleischwitz, R; Hoff, H; Spataru, C; Voet, EV; VanDeveer, S;Demand for natural resources has grown rapidly for decades, and is expected to continue growing. These trends lead to repercussions, risks, and threats for humans and ecosystems at different scales. The challenges of sustainable resource management and governance are on numerous agendas, ranging from the G7 and G20 summits to UNEP’s International Resource Panel, World Economic Forum, SDG implementation, and a growing community of international scholars. Research highlights the importance of accounting for the interdependencies of resource use and sustainability goals such as eliminating hunger, mitigating climate change, and expanding energy access. There is a need to understand interdependencies and the feasibility of more integrated approaches. Debate is often framed in terms of a “nexus” between water, energy, and food (sometimes including other resources). The main aim of this handbook is to come to grips with what the nexus is about, provide a reference textbook with an overview, and a survey on emerging and cutting-edge research, and application of the concept. This handbook is edited by five dedicated scholars, drawing on different schools of thought from different continents. Assembling a wide group of more than 50 authors across a host of disciplines and interdisciplinary fields, this volume rests on a thorough review of relevant literature and, in emerging with a distinct and original perspective, it conceptualizes the resource nexus as a heuristic for understanding critical interlinkages between uses of different natural resources for systems of provision such as water, energy, and food. The editors organized a symposium which took place in London in March 2015, debating various aspects of the resource nexus and refining the concept and defining the structure of the handbook. All chapters have been reviewed several times.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::971d1fefa3788d90c8628bfef5096911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::971d1fefa3788d90c8628bfef5096911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2017 United Kingdom, GermanyPublisher:Routledge Bleischwitz, R; Hoff, H; Spataru, C; Voet, EV; VanDeveer, S;Demand for natural resources has grown rapidly for decades, and is expected to continue growing. These trends lead to repercussions, risks, and threats for humans and ecosystems at different scales. The challenges of sustainable resource management and governance are on numerous agendas, ranging from the G7 and G20 summits to UNEP’s International Resource Panel, World Economic Forum, SDG implementation, and a growing community of international scholars. Research highlights the importance of accounting for the interdependencies of resource use and sustainability goals such as eliminating hunger, mitigating climate change, and expanding energy access. There is a need to understand interdependencies and the feasibility of more integrated approaches. Debate is often framed in terms of a “nexus” between water, energy, and food (sometimes including other resources). The main aim of this handbook is to come to grips with what the nexus is about, provide a reference textbook with an overview, and a survey on emerging and cutting-edge research, and application of the concept. This handbook is edited by five dedicated scholars, drawing on different schools of thought from different continents. Assembling a wide group of more than 50 authors across a host of disciplines and interdisciplinary fields, this volume rests on a thorough review of relevant literature and, in emerging with a distinct and original perspective, it conceptualizes the resource nexus as a heuristic for understanding critical interlinkages between uses of different natural resources for systems of provision such as water, energy, and food. The editors organized a symposium which took place in London in March 2015, debating various aspects of the resource nexus and refining the concept and defining the structure of the handbook. All chapters have been reviewed several times.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::971d1fefa3788d90c8628bfef5096911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::971d1fefa3788d90c8628bfef5096911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 AustraliaPublisher:Elsevier BV Authors: Rabiee, Hesamoddin; Khalilpour, Kaveh Rajab; Betts, John M.; Tapper, Nigel;Increased water scarcity across increasing world populations has led to a greater demand for desalination. However, the energy intensity and subsequent high costs of desalination remain the main barrier for widespread deployment of desalination systems. Add to this, the sustainability concerns of fossil fuel energy sources. This challenge has led to focused international research on the energy-water nexus. In recent years, several types of renewable energy have been integrated with a variety of desalination processes. Various large-capacity, renewable-desalination (RE-desalination) plants have been built across the world, especially in Middle Eastern countries, where water is relatively scarce and renewable resources are abundant and accessible. In addition, the reduction in the cost of photovoltaic (PV) panels by almost 80% over the last decade has contributed to their greater economy and wide deployment worldwide. For remote areas, it is now reasonable to consider offgrid, small-capacity RE-desalination systems, since in these regions transportation of fuel or water and connection to the grid are prohibitively expensive or impractical. Various renewable energies—such as solar, wind, and geothermal—can be coupled with many desalination methods, based on the availability of these resources in different locations, and also on other factors such as reliability required or the capital cost of establishment. This chapter reviews these various methods of desalination and configurations of RE-desalination systems currently in use, or under development. In addition, the issues relating to grid connectivity of RE-desalination systems and the economy of grid connection versus complete or partial energy independence are explained.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpacePart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813306-4.00013-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpacePart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813306-4.00013-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 AustraliaPublisher:Elsevier BV Authors: Rabiee, Hesamoddin; Khalilpour, Kaveh Rajab; Betts, John M.; Tapper, Nigel;Increased water scarcity across increasing world populations has led to a greater demand for desalination. However, the energy intensity and subsequent high costs of desalination remain the main barrier for widespread deployment of desalination systems. Add to this, the sustainability concerns of fossil fuel energy sources. This challenge has led to focused international research on the energy-water nexus. In recent years, several types of renewable energy have been integrated with a variety of desalination processes. Various large-capacity, renewable-desalination (RE-desalination) plants have been built across the world, especially in Middle Eastern countries, where water is relatively scarce and renewable resources are abundant and accessible. In addition, the reduction in the cost of photovoltaic (PV) panels by almost 80% over the last decade has contributed to their greater economy and wide deployment worldwide. For remote areas, it is now reasonable to consider offgrid, small-capacity RE-desalination systems, since in these regions transportation of fuel or water and connection to the grid are prohibitively expensive or impractical. Various renewable energies—such as solar, wind, and geothermal—can be coupled with many desalination methods, based on the availability of these resources in different locations, and also on other factors such as reliability required or the capital cost of establishment. This chapter reviews these various methods of desalination and configurations of RE-desalination systems currently in use, or under development. In addition, the issues relating to grid connectivity of RE-desalination systems and the economy of grid connection versus complete or partial energy independence are explained.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpacePart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813306-4.00013-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpacePart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813306-4.00013-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Embargo end date: 06 Jan 2021Publisher:Mendeley Authors: Junlian Gao (10001076);This data included the detailed mathematical description of the model and all the data adopted in the model
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mgy5mx5t8r.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mgy5mx5t8r.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 06 Jan 2021Publisher:Mendeley Authors: Junlian Gao (10001076);This data included the detailed mathematical description of the model and all the data adopted in the model
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mgy5mx5t8r.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/mgy5mx5t8r.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Elsevier BV Authors: Javier Farfan; Alena Lohrmann; Henrik Saxén;One commonly-used argument against fluctuating renewables is their unpredictability. In contrast, thermal power generation and hydropower are regularly presented as reliable and dispatchable. However, droughts and floods can render useless the share of the power generation infrastructure that directly depends on freshwater. In this work, the global power sector is analysed from an energy-water nexus perspective to evaluate its reliability in case of severe water scarcity on a per-power plant basis, proposing a new method for combining it with water stress scores. At a country level, known individual thermal and hydropower plants are paired with regional water stress projections from 2020 to 2030 and their water source as a bottom-up approach to account for the capacities at risk and identify the points where water dependence could render a power system unreliable. The results show that, globally, about 65 % of generating capacities are directly freshwater-dependent. Moreover, the share of capacities placed in the low-resiliency group increases from 9 % of the total installed in 2020 to over 24 % in 2030 in all scenarios. The findings could help guide the development of the global power sector towards a less water-dependent system and accelerate the deployment of low water-demand power generation technologies. Smart Energy, 14 ISSN:2666-9552
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segy.2024.100142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segy.2024.100142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Elsevier BV Authors: Javier Farfan; Alena Lohrmann; Henrik Saxén;One commonly-used argument against fluctuating renewables is their unpredictability. In contrast, thermal power generation and hydropower are regularly presented as reliable and dispatchable. However, droughts and floods can render useless the share of the power generation infrastructure that directly depends on freshwater. In this work, the global power sector is analysed from an energy-water nexus perspective to evaluate its reliability in case of severe water scarcity on a per-power plant basis, proposing a new method for combining it with water stress scores. At a country level, known individual thermal and hydropower plants are paired with regional water stress projections from 2020 to 2030 and their water source as a bottom-up approach to account for the capacities at risk and identify the points where water dependence could render a power system unreliable. The results show that, globally, about 65 % of generating capacities are directly freshwater-dependent. Moreover, the share of capacities placed in the low-resiliency group increases from 9 % of the total installed in 2020 to over 24 % in 2030 in all scenarios. The findings could help guide the development of the global power sector towards a less water-dependent system and accelerate the deployment of low water-demand power generation technologies. Smart Energy, 14 ISSN:2666-9552
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segy.2024.100142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segy.2024.100142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection 2020Publisher:Eawag: Swiss Federal Institute of Aquatic Science and Technology Authors: Hadengue, Bruno; Scheidegger, Andreas; Morgenroth, Eberhard; Larsen, Tove A.;doi: 10.25678/0002b1
This package provides material related to the paper`B. Hadengue, A. Scheidegger, E. Morgenroth, T.A. Larsen, Modeling the Water-Energy Nexus in Households, Energy & Buildings (2020), doi: https://doi.org/10.1016/j.enbuild.2020.110262`Various scripts and code, as well as raw results, are included.### Paper AbstractOne third of the global carbon emissions are emitted by the building sector. Over the last decades, space heating loads have decreased in modern buildings, and domestic hot water (DHW) is now oftentimes the largest energy consumer in the household. We developed the WaterHub modeling framework to assess the potential of technologies or measures targeting DHW energy demand. The framework combines process-based technological models and stochastic water demand modeling in a modular way to allow for holistic simulations of complex DHW systems. In two rigorous tests of the modeling framework, we demonstrated the importance of water consumption dynamics in the modeling of DHW systems, showing that static modeling leads to underestimated heat losses and wrong energy consumption predictions. In an exemplary case study, we identified and quantified the synergistic interactions between water boiler temperatures and a drain water heat recovery device, demonstrating the strength of this methodology for optimizing strategies targeting DHW systems. With its modular structure, this open-source modeling framework can be extended to include any DHW-related technology, providing a useful common platform for collaboration between technology developers and water experts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25678/0002b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25678/0002b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection 2020Publisher:Eawag: Swiss Federal Institute of Aquatic Science and Technology Authors: Hadengue, Bruno; Scheidegger, Andreas; Morgenroth, Eberhard; Larsen, Tove A.;doi: 10.25678/0002b1
This package provides material related to the paper`B. Hadengue, A. Scheidegger, E. Morgenroth, T.A. Larsen, Modeling the Water-Energy Nexus in Households, Energy & Buildings (2020), doi: https://doi.org/10.1016/j.enbuild.2020.110262`Various scripts and code, as well as raw results, are included.### Paper AbstractOne third of the global carbon emissions are emitted by the building sector. Over the last decades, space heating loads have decreased in modern buildings, and domestic hot water (DHW) is now oftentimes the largest energy consumer in the household. We developed the WaterHub modeling framework to assess the potential of technologies or measures targeting DHW energy demand. The framework combines process-based technological models and stochastic water demand modeling in a modular way to allow for holistic simulations of complex DHW systems. In two rigorous tests of the modeling framework, we demonstrated the importance of water consumption dynamics in the modeling of DHW systems, showing that static modeling leads to underestimated heat losses and wrong energy consumption predictions. In an exemplary case study, we identified and quantified the synergistic interactions between water boiler temperatures and a drain water heat recovery device, demonstrating the strength of this methodology for optimizing strategies targeting DHW systems. With its modular structure, this open-source modeling framework can be extended to include any DHW-related technology, providing a useful common platform for collaboration between technology developers and water experts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25678/0002b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25678/0002b1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Carlino, Angelo; Giuliani, Matteo; Zamberletti, Patrizia; Recanati, Francesca; Castelletti, Andrea;The dataset is composed by 12 files reporting the water availability and temperature scenarios for 167 water-dependent power plants in the Danube river basin and the Iberian Peninsula. The dataset is split into multiple files by region (Danube river basin (Danube) or Iberian Peninsula (IP)), variable (discharge or river temperature) and scenario (baseline, RCP26 or RCP85) considered. The title of each file is composed by the variable reported (discharge or river temperature) and the scenario considered (baseline: 1951-2004, RCP26: 2006-2100, RCP85: 2006-2100). The first row is used to report the fields considered: the first three columns report the day, the month and the year. The remaining columns report the name of the power plant considered in each region (57 for the Daube river basin and 110 for the Iberian Peninsula). In each row day, month, year and streamflow or river temperature values are reported for every water-dependent power plant examined in the study. Temperature is reported as daily average temperature in degrees Celsius (°C) while water availability is reported as daily average streamflow in cubic meters per second (m^3/s). For a description on how these files were obtained, please refer to https://doi.org/10.2777/135510. This dataset was produced in the context of the project "US-EU integrated power and water systems modelling" funded by the European Commission Directorate General for Research and Innovation, Directorate G. - Energy, Unit G3 - Renewable Energy Sources, PP-06161-2017.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4339120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4339120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Carlino, Angelo; Giuliani, Matteo; Zamberletti, Patrizia; Recanati, Francesca; Castelletti, Andrea;The dataset is composed by 12 files reporting the water availability and temperature scenarios for 167 water-dependent power plants in the Danube river basin and the Iberian Peninsula. The dataset is split into multiple files by region (Danube river basin (Danube) or Iberian Peninsula (IP)), variable (discharge or river temperature) and scenario (baseline, RCP26 or RCP85) considered. The title of each file is composed by the variable reported (discharge or river temperature) and the scenario considered (baseline: 1951-2004, RCP26: 2006-2100, RCP85: 2006-2100). The first row is used to report the fields considered: the first three columns report the day, the month and the year. The remaining columns report the name of the power plant considered in each region (57 for the Daube river basin and 110 for the Iberian Peninsula). In each row day, month, year and streamflow or river temperature values are reported for every water-dependent power plant examined in the study. Temperature is reported as daily average temperature in degrees Celsius (°C) while water availability is reported as daily average streamflow in cubic meters per second (m^3/s). For a description on how these files were obtained, please refer to https://doi.org/10.2777/135510. This dataset was produced in the context of the project "US-EU integrated power and water systems modelling" funded by the European Commission Directorate General for Research and Innovation, Directorate G. - Energy, Unit G3 - Renewable Energy Sources, PP-06161-2017.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4339120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4339120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 ParaguayAuthors: Pereira, Gabriel; González Osorio, Arturo Ramón; Ríos, Richard;handle: 20.500.14066/3708
Water needs energy and energy needs water. In this context, the optimization of the use of each of these variables is a fundamental goal to tackle climate change and achieve sustainable development. The water-energy nexus has gained relevance in the literature through the study of their dependencies, with the objective of increasing their synergies and reducing their trade-offs. Moreover, the nexus approach has proven to be a useful methodology to evaluate the impact of a variable (or group of variables) in a specific system or network, as for example, the intricate network of the Sustainable Development Goals (SDG). The main purpose of this study is to improve the understanding of the water-energy nexus through a comprehensive literature review, based on the influence of the publications (citation-based approach). The methodology allows the identification of the top 50 most influential papers related to the water-energy nexus, based on the number of citations that it has, since its publication in a scientific journal. Additionally, it has been analyzed the main journals in this topic, the context and characteristics of the publications (geographical locations and study design), most cited authors, the timeline and evolution of the literature. Finally, the study seeks to improve the comprehension of the relevance of the dependencies and interactions between these variables, added to their fundamental roles in the whole system. CONACYT - Consejo Nacional de Ciencia y Tecnología PROCIENCIA
Repositorio Instituc... arrow_drop_down Repositorio Institucional CONACYTOther ORP type . 2020Data sources: Repositorio Institucional CONACYTadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10722::b19ee0c54203253e9222a59f06c70928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Repositorio Instituc... arrow_drop_down Repositorio Institucional CONACYTOther ORP type . 2020Data sources: Repositorio Institucional CONACYTadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10722::b19ee0c54203253e9222a59f06c70928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 ParaguayAuthors: Pereira, Gabriel; González Osorio, Arturo Ramón; Ríos, Richard;handle: 20.500.14066/3708
Water needs energy and energy needs water. In this context, the optimization of the use of each of these variables is a fundamental goal to tackle climate change and achieve sustainable development. The water-energy nexus has gained relevance in the literature through the study of their dependencies, with the objective of increasing their synergies and reducing their trade-offs. Moreover, the nexus approach has proven to be a useful methodology to evaluate the impact of a variable (or group of variables) in a specific system or network, as for example, the intricate network of the Sustainable Development Goals (SDG). The main purpose of this study is to improve the understanding of the water-energy nexus through a comprehensive literature review, based on the influence of the publications (citation-based approach). The methodology allows the identification of the top 50 most influential papers related to the water-energy nexus, based on the number of citations that it has, since its publication in a scientific journal. Additionally, it has been analyzed the main journals in this topic, the context and characteristics of the publications (geographical locations and study design), most cited authors, the timeline and evolution of the literature. Finally, the study seeks to improve the comprehension of the relevance of the dependencies and interactions between these variables, added to their fundamental roles in the whole system. CONACYT - Consejo Nacional de Ciencia y Tecnología PROCIENCIA
Repositorio Instituc... arrow_drop_down Repositorio Institucional CONACYTOther ORP type . 2020Data sources: Repositorio Institucional CONACYTadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10722::b19ee0c54203253e9222a59f06c70928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Repositorio Instituc... arrow_drop_down Repositorio Institucional CONACYTOther ORP type . 2020Data sources: Repositorio Institucional CONACYTadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10722::b19ee0c54203253e9222a59f06c70928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2015 United StatesAuthors: Gold, Gary M.;handle: 2152/31906
text ; Water stress is a worldwide reality. Planners and managers of water resources around the world are tasked with finding new, creative, and innovative solutions to challenges posed by growing populations and declining water supplies. Securing safe drinking water, however, has impacts beyond the water sector. In particular, the connection between energy and water must be carefully considered to avoid unwelcome increases in energy consumption as a result of new water management strategies. One strategy that is gaining increasing attention is desalination of brackish groundwater. However, desalination is an energy-intensive process and could have negative impacts in the energy sector if conventional approaches are used. Relying on fossil fuels for desalination could drive up carbon dioxide emissions associated with water treatment and increase the cost required to produce drinking water. Integrating desalination with renewable power sources such as wind and so- lar energy can mitigate concerns regarding the energy intensity of desalination. By coupling water treatment with non-carbon emitting sources of power, it is possible to meet growing water demands in a sustainable manner. At the same time, water pro- duction offers an opportunity to address problems associated with the intermittent nature of wind and solar power production. Desalination is a time-flexible process that pairs well with wind and solar power, two sources of energy that are limited in application by their daily and seasonal variability. Integrating desalination with wind and solar power offers a solution to energetic challenges of water production while using wind and solar power for desalination offers a solution to challenges associated with the intermittent nature of renewable power. Additionally, utilizing photovoltaic-thermal (PVT) solar modules in an inte- grated facility could be advantageous to both the water and solar power production processes. Brackish groundwater, which is at a relatively cool temperature, can be used to cool ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2152/31906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2152/31906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2015 United StatesAuthors: Gold, Gary M.;handle: 2152/31906
text ; Water stress is a worldwide reality. Planners and managers of water resources around the world are tasked with finding new, creative, and innovative solutions to challenges posed by growing populations and declining water supplies. Securing safe drinking water, however, has impacts beyond the water sector. In particular, the connection between energy and water must be carefully considered to avoid unwelcome increases in energy consumption as a result of new water management strategies. One strategy that is gaining increasing attention is desalination of brackish groundwater. However, desalination is an energy-intensive process and could have negative impacts in the energy sector if conventional approaches are used. Relying on fossil fuels for desalination could drive up carbon dioxide emissions associated with water treatment and increase the cost required to produce drinking water. Integrating desalination with renewable power sources such as wind and so- lar energy can mitigate concerns regarding the energy intensity of desalination. By coupling water treatment with non-carbon emitting sources of power, it is possible to meet growing water demands in a sustainable manner. At the same time, water pro- duction offers an opportunity to address problems associated with the intermittent nature of wind and solar power production. Desalination is a time-flexible process that pairs well with wind and solar power, two sources of energy that are limited in application by their daily and seasonal variability. Integrating desalination with wind and solar power offers a solution to energetic challenges of water production while using wind and solar power for desalination offers a solution to challenges associated with the intermittent nature of renewable power. Additionally, utilizing photovoltaic-thermal (PVT) solar modules in an inte- grated facility could be advantageous to both the water and solar power production processes. Brackish groundwater, which is at a relatively cool temperature, can be used to cool ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2152/31906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2152/31906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Cardoso, Pedro;doi: 10.17632/9ztwrrtnjz
The presented tables compile all water-related evaluation criteria of the analysed methodologies and rate them by importance for a future approach. This rating aims to rank the criteria by the relevance to be included in a future dedicated water-energy nexus evaluation performance methodology. For this criteria rating, through all compared methodologies it is used the following symbology: (+++) very important criteria that will be included in the future methodology; (++) Important criteria that can be included, in the future methodology, with few adaptations; (+) Relevant criteria that can be included, in the future methodology, with extensive adaptations; (-) Irrelevant criteria for the future methodology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9ztwrrtnjz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9ztwrrtnjz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Cardoso, Pedro;doi: 10.17632/9ztwrrtnjz
The presented tables compile all water-related evaluation criteria of the analysed methodologies and rate them by importance for a future approach. This rating aims to rank the criteria by the relevance to be included in a future dedicated water-energy nexus evaluation performance methodology. For this criteria rating, through all compared methodologies it is used the following symbology: (+++) very important criteria that will be included in the future methodology; (++) Important criteria that can be included, in the future methodology, with few adaptations; (+) Relevant criteria that can be included, in the future methodology, with extensive adaptations; (-) Irrelevant criteria for the future methodology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9ztwrrtnjz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9ztwrrtnjz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 24 Mar 2021Publisher:Zenodo Authors: Peer, Rebecca A.M.; Chini, Christopher M.;This descriptor contains datasets and scripts used for the analysis of global water and carbon footprints of electricity from 1990 to 2018. Here we present the scripts used for data collection, cleaning, and analysis as well as the completed databases of country, regional, and continental-scale water and carbon footprints over the 29-year period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4560776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4560776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 24 Mar 2021Publisher:Zenodo Authors: Peer, Rebecca A.M.; Chini, Christopher M.;This descriptor contains datasets and scripts used for the analysis of global water and carbon footprints of electricity from 1990 to 2018. Here we present the scripts used for data collection, cleaning, and analysis as well as the completed databases of country, regional, and continental-scale water and carbon footprints over the 29-year period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4560776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4560776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2017 United Kingdom, GermanyPublisher:Routledge Bleischwitz, R; Hoff, H; Spataru, C; Voet, EV; VanDeveer, S;Demand for natural resources has grown rapidly for decades, and is expected to continue growing. These trends lead to repercussions, risks, and threats for humans and ecosystems at different scales. The challenges of sustainable resource management and governance are on numerous agendas, ranging from the G7 and G20 summits to UNEP’s International Resource Panel, World Economic Forum, SDG implementation, and a growing community of international scholars. Research highlights the importance of accounting for the interdependencies of resource use and sustainability goals such as eliminating hunger, mitigating climate change, and expanding energy access. There is a need to understand interdependencies and the feasibility of more integrated approaches. Debate is often framed in terms of a “nexus” between water, energy, and food (sometimes including other resources). The main aim of this handbook is to come to grips with what the nexus is about, provide a reference textbook with an overview, and a survey on emerging and cutting-edge research, and application of the concept. This handbook is edited by five dedicated scholars, drawing on different schools of thought from different continents. Assembling a wide group of more than 50 authors across a host of disciplines and interdisciplinary fields, this volume rests on a thorough review of relevant literature and, in emerging with a distinct and original perspective, it conceptualizes the resource nexus as a heuristic for understanding critical interlinkages between uses of different natural resources for systems of provision such as water, energy, and food. The editors organized a symposium which took place in London in March 2015, debating various aspects of the resource nexus and refining the concept and defining the structure of the handbook. All chapters have been reviewed several times.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::971d1fefa3788d90c8628bfef5096911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::971d1fefa3788d90c8628bfef5096911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2017 United Kingdom, GermanyPublisher:Routledge Bleischwitz, R; Hoff, H; Spataru, C; Voet, EV; VanDeveer, S;Demand for natural resources has grown rapidly for decades, and is expected to continue growing. These trends lead to repercussions, risks, and threats for humans and ecosystems at different scales. The challenges of sustainable resource management and governance are on numerous agendas, ranging from the G7 and G20 summits to UNEP’s International Resource Panel, World Economic Forum, SDG implementation, and a growing community of international scholars. Research highlights the importance of accounting for the interdependencies of resource use and sustainability goals such as eliminating hunger, mitigating climate change, and expanding energy access. There is a need to understand interdependencies and the feasibility of more integrated approaches. Debate is often framed in terms of a “nexus” between water, energy, and food (sometimes including other resources). The main aim of this handbook is to come to grips with what the nexus is about, provide a reference textbook with an overview, and a survey on emerging and cutting-edge research, and application of the concept. This handbook is edited by five dedicated scholars, drawing on different schools of thought from different continents. Assembling a wide group of more than 50 authors across a host of disciplines and interdisciplinary fields, this volume rests on a thorough review of relevant literature and, in emerging with a distinct and original perspective, it conceptualizes the resource nexus as a heuristic for understanding critical interlinkages between uses of different natural resources for systems of provision such as water, energy, and food. The editors organized a symposium which took place in London in March 2015, debating various aspects of the resource nexus and refining the concept and defining the structure of the handbook. All chapters have been reviewed several times.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::971d1fefa3788d90c8628bfef5096911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::971d1fefa3788d90c8628bfef5096911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 AustraliaPublisher:Elsevier BV Authors: Rabiee, Hesamoddin; Khalilpour, Kaveh Rajab; Betts, John M.; Tapper, Nigel;Increased water scarcity across increasing world populations has led to a greater demand for desalination. However, the energy intensity and subsequent high costs of desalination remain the main barrier for widespread deployment of desalination systems. Add to this, the sustainability concerns of fossil fuel energy sources. This challenge has led to focused international research on the energy-water nexus. In recent years, several types of renewable energy have been integrated with a variety of desalination processes. Various large-capacity, renewable-desalination (RE-desalination) plants have been built across the world, especially in Middle Eastern countries, where water is relatively scarce and renewable resources are abundant and accessible. In addition, the reduction in the cost of photovoltaic (PV) panels by almost 80% over the last decade has contributed to their greater economy and wide deployment worldwide. For remote areas, it is now reasonable to consider offgrid, small-capacity RE-desalination systems, since in these regions transportation of fuel or water and connection to the grid are prohibitively expensive or impractical. Various renewable energies—such as solar, wind, and geothermal—can be coupled with many desalination methods, based on the availability of these resources in different locations, and also on other factors such as reliability required or the capital cost of establishment. This chapter reviews these various methods of desalination and configurations of RE-desalination systems currently in use, or under development. In addition, the issues relating to grid connectivity of RE-desalination systems and the economy of grid connection versus complete or partial energy independence are explained.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpacePart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813306-4.00013-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpacePart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813306-4.00013-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2019 AustraliaPublisher:Elsevier BV Authors: Rabiee, Hesamoddin; Khalilpour, Kaveh Rajab; Betts, John M.; Tapper, Nigel;Increased water scarcity across increasing world populations has led to a greater demand for desalination. However, the energy intensity and subsequent high costs of desalination remain the main barrier for widespread deployment of desalination systems. Add to this, the sustainability concerns of fossil fuel energy sources. This challenge has led to focused international research on the energy-water nexus. In recent years, several types of renewable energy have been integrated with a variety of desalination processes. Various large-capacity, renewable-desalination (RE-desalination) plants have been built across the world, especially in Middle Eastern countries, where water is relatively scarce and renewable resources are abundant and accessible. In addition, the reduction in the cost of photovoltaic (PV) panels by almost 80% over the last decade has contributed to their greater economy and wide deployment worldwide. For remote areas, it is now reasonable to consider offgrid, small-capacity RE-desalination systems, since in these regions transportation of fuel or water and connection to the grid are prohibitively expensive or impractical. Various renewable energies—such as solar, wind, and geothermal—can be coupled with many desalination methods, based on the availability of these resources in different locations, and also on other factors such as reliability required or the capital cost of establishment. This chapter reviews these various methods of desalination and configurations of RE-desalination systems currently in use, or under development. In addition, the issues relating to grid connectivity of RE-desalination systems and the economy of grid connection versus complete or partial energy independence are explained.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpacePart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813306-4.00013-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpacePart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-813306-4.00013-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu