- home
- Advanced Search
- Energy Research
- Amirkabir University of Technology
- Energy Research
- Amirkabir University of Technology
description Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Elsevier BV Authors: Rassekh, Amin; Shalchian, Majid; Sallese, Jean-Michel; Jazaeri, Farzan;Solid-state qubits can be implemented with electrostatically confined quantum dots in semiconductors, allowing gate voltages to independently control the electrochemical potentials of each quantum dot. Quantum dots offer high levels of reliability and scalability. In this paper, along with our proposed approach based on the Generalized Hubbard model followed by Fermi's Golden rule, the charge stability diagram of a double quantum dots system with two electrons has been studied extensively. The validity of the presented approach is confirmed by experimental data. Using Fermi's Golden rule for mapping the charge stability diagram, we have deeply studied the temperature effects arising from both the Hamiltonian and transport. In addition, spin-exchange, pair-hopping, and the occupation-modulated hopping parameters on the states of the charge stability diagram are deeply discussed. Furthermore, we incorporate the Zeeman energies in the Hubbard model in order to theoretically study the spin splitting caused by an external magnetic field applied to the quantum dots. In particular, the aim of this paper is to rely on fundamental physical concepts in order to model and optimize the singlet-triplet qubit in quantum dots. In this study, the probabilities associated with singlet and triplet states have been modeled and analyzed under the impacts of intrinsic and extrinsic parameters. This will help us to find the optimal condition for coupling between double dots and provides us the design rules in terms of physical parameters to efficiently design, measure and sense, initialize, manipulate, and readout of the qubit state.
Physica B Condensed ... arrow_drop_down Physica B Condensed MatterArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physb.2023.415133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Physica B Condensed ... arrow_drop_down Physica B Condensed MatterArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physb.2023.415133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SwitzerlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Amin Rassekh; Majid Shalchian; Jean-Michel Sallese; Farzan Jazaeri;Electrostatically confined quantum dots in semiconductors hold the promise to achieve high scalability and reliability levels for practical implementation of solid-state qubits where the electrochemical potentials of each quantum dot can be independently controlled by the gate voltages.In this paper, the current and charge stability diagram of two-well potentials arising from electrostatically defined double quantum dot (DQD) are analytically realized. We propose to apply the Generalized Hubbard model to find the Hamiltonian of the system. The proposed analysis takes the tunnel coupling between the dots, Coulomb interaction, and Zeeman energy arising from an external magnetic field into account. Using quantum master equations to predict the probability of the final states in a DQD system, we study the tunneling current through two quantum dots coupled in series with two conducting leads, and therefore, the charge stability diagram is theoretically investigated. The impact of the tunnel coupling and Zeeman energy on the charge stability diagram is deeply discussed. The validity of the presented analysis is confirmed by experimental data as well as the classical capacitance model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3190617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3190617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Elsevier BV Authors: Rassekh, Amin; Shalchian, Majid; Sallese, Jean-Michel; Jazaeri, Farzan;Solid-state qubits can be implemented with electrostatically confined quantum dots in semiconductors, allowing gate voltages to independently control the electrochemical potentials of each quantum dot. Quantum dots offer high levels of reliability and scalability. In this paper, along with our proposed approach based on the Generalized Hubbard model followed by Fermi's Golden rule, the charge stability diagram of a double quantum dots system with two electrons has been studied extensively. The validity of the presented approach is confirmed by experimental data. Using Fermi's Golden rule for mapping the charge stability diagram, we have deeply studied the temperature effects arising from both the Hamiltonian and transport. In addition, spin-exchange, pair-hopping, and the occupation-modulated hopping parameters on the states of the charge stability diagram are deeply discussed. Furthermore, we incorporate the Zeeman energies in the Hubbard model in order to theoretically study the spin splitting caused by an external magnetic field applied to the quantum dots. In particular, the aim of this paper is to rely on fundamental physical concepts in order to model and optimize the singlet-triplet qubit in quantum dots. In this study, the probabilities associated with singlet and triplet states have been modeled and analyzed under the impacts of intrinsic and extrinsic parameters. This will help us to find the optimal condition for coupling between double dots and provides us the design rules in terms of physical parameters to efficiently design, measure and sense, initialize, manipulate, and readout of the qubit state.
Physica B Condensed ... arrow_drop_down Physica B Condensed MatterArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physb.2023.415133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Physica B Condensed ... arrow_drop_down Physica B Condensed MatterArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physb.2023.415133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SwitzerlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Amin Rassekh; Majid Shalchian; Jean-Michel Sallese; Farzan Jazaeri;Electrostatically confined quantum dots in semiconductors hold the promise to achieve high scalability and reliability levels for practical implementation of solid-state qubits where the electrochemical potentials of each quantum dot can be independently controlled by the gate voltages.In this paper, the current and charge stability diagram of two-well potentials arising from electrostatically defined double quantum dot (DQD) are analytically realized. We propose to apply the Generalized Hubbard model to find the Hamiltonian of the system. The proposed analysis takes the tunnel coupling between the dots, Coulomb interaction, and Zeeman energy arising from an external magnetic field into account. Using quantum master equations to predict the probability of the final states in a DQD system, we study the tunneling current through two quantum dots coupled in series with two conducting leads, and therefore, the charge stability diagram is theoretically investigated. The impact of the tunnel coupling and Zeeman energy on the charge stability diagram is deeply discussed. The validity of the presented analysis is confirmed by experimental data as well as the classical capacitance model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3190617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2022.3190617&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu