- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- 11. Sustainability
- Energy Research
- 7. Clean energy
- 13. Climate action
- 11. Sustainability
description Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:Elsevier BV Authors: Koami Soulemane Hayibo; Joshua M. Pearce;To enable lower-cost building materials, a free-swinging bifacial vertical solar photovoltaic (PV) rack has been proposed, which complies with Canadian building codes and is the lowest-capital-cost agrivoltaics rack. The wind force applied to the free-swinging PV, however, causes it to have a non-90° tilt angle and no energy performance model accurately describes such a system. To provide a simulation model for the free-swinging PV, where wind speed and direction govern the array tilt angle, this study builds upon the open-source System Advisor Model (SAM) using Python. After the SAM python model is validated, a view factor model is used to calculate front and back irradiations. The findings reveal that free-swinging PV generates 12% more energy than vertical fixed-tilt PV. Free-swinging PV offers a levelized racking cost, which is 30% lower than that of other agrivoltaics racks including commercial fixed-tilt metal, optimized fixed-tilt wood, and seasonally-adjusted wood PV racking.
The University of We... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2023License: CC BYFull-Text: https://ir.lib.uwo.ca/electricalpub/602Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of We... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2023License: CC BYFull-Text: https://ir.lib.uwo.ca/electricalpub/602Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Advanced Engineering and Science Tariq Emad Ali; Mohammed A. Abdala; Ameer Al-Khaykan; Dhulfiqar A. Alwahab; Counsell M. Counsell;<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV array in three tracking positions are presented in this paper. This paper shows that the average electricity generated in North cities (Dohuk, Al-Sulaymaniyah, and Erbil) are less than the southern cities in the winter season (three positions) by about 40-50%. Iraq has a stable PV electrical generation during all the year in all regions except the North cities while the highest cities in electricity generation are (Najaf and Al-Anbar).</span>
International Journa... arrow_drop_down International Journal of Electrical and Computer Engineering (IJECE)Article . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijece.v13i4.pp3606-3612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert International Journa... arrow_drop_down International Journal of Electrical and Computer Engineering (IJECE)Article . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijece.v13i4.pp3606-3612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 02 Jul 2018Publisher:Mendeley Authors: Muniz, E;Measurements of electrical characteristics of a photovoltaic panel while outdoor, changing the number of covered/inactive cells and the number of bypass diodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/hssdg65gyr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/hssdg65gyr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1996 United StatesPublisher:IEEE Mitchell, Richard L.; Witt, C. Edwin; Thomas, Holly P.; Herwig, Lloyd O.; Ruby, Douglas S.; Aldrich, Clay C.;This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the worldwide competitiveness of the US PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value and reductions in the price of today's PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, US module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.1996.564350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.1996.564350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1998 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: McNutt, P.; Kroposki, B.; Hansen, R.; DeBlasio, R.;doi: 10.2172/656853
This document provides test methods and procedures for determining the performance of small stand-alone and utility-grid connected PV systems. The procedures in this document provide a common approach for evaluating whether a given PV system is suitable to perform the function it was designed and manufactured to accomplish and meet the application load. This test document fills a testing void and provides the catalyst and focus for establishing the technical foundation and bridging the institutional barriers needed to reduce uncertainty that a system`s performance will be what its designers and builders claim. The need for this document was recently made more apparent with the initiation of a PV Global Approval Program (PVGAP) at the international level and is in response to concerns that PV systems being fielded must meet performance standards and that these standards include system-level performance type tests. The title of these test procedures is prefaced with the word interim because experience in using the procedures is needed before a consensus standard is developed and accepted by the PV community through its activities with the IEEE Standards Coordinating Committee 21 (SCC21) and International Electrotechnical Commission Technical Committee 82 (IEC TC82) national and international standards-making bodies. Both entities have initiated projects to develop test standards and will need the technical basis and validation of test procedures such as those presented in this document before a consensus is achieved by the PV community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/656853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/656853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2013 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Kurtz, S.; Newmiller, J.; Kimber, A.; Flottemesch, R.; Riley, E.; Dierauf, T.; McKee, J.; Krishnani, P.;doi: 10.2172/1111193
Documentation of the energy yield of a large photovoltaic (PV) system over a substantial period can be useful to measure a performance guarantee, as an assessment of the health of the system, for verification of a performance model to then be applied to a new system, or for a variety of other purposes. Although the measurement of this performance metric might appear to be straight forward, there are a number of subtleties associated with variations in weather and imperfect data collection that complicate the determination and data analysis. A performance assessment is most valuable when it is completed with a very low uncertainty and when the subtleties are systematically addressed, yet currently no standard exists to guide this process. This report summarizes a draft methodology for an Energy Performance Evaluation Method, the philosophy behind the draft method, and the lessons that were learned by implementing the method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1111193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1111193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1999 United StatesPublisher:Office of Scientific and Technical Information (OSTI) McNutt, P.; Kroposki, B.; Hansen, R.; DeBlasio; R. (National Renewable Energy Laboratory); Thomas; M. (Sandia National Laboratories); Durand; S. (Florida Solar Energy Center); Rosenthal; A. (Southwest Technology Development Institute); Hutchinson; P. (Photovoltaics for Utility Scale Applications);doi: 10.2172/14449
This document provides the procedures for determining the performance of stand-alone PV systems. The procedures in this document provide a common approach for evaluating whether a given PV system is suitable to perform the function for which it was designed and manufactured to accomplish, and whether it will provide adequate power to run the load. These procedures cover small stand-alone PV systems. They cover complete outdoor system testing. Test results are valid only for the system that is tested.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/14449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/14449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2016Publisher:TU Wien Authors: Winkler, Nina;The subject of this thesis is the development of a chemical bath deposition (CBD) route for magnesium doped zinc oxide (ZnMgO) - a wide band, n-type semiconductor material. ZnMgO is relevant for a wide range of applications, among others for optical coatings, optoelectronic devices (such as touch screens and light emitting diodes) and thin film photovoltaics (TFPV). In the last case, where this thesis focuses, ZnMgO is mainly investigated as buffer layer, combined with chalcogenide (Cu-In-Ga-S(Se) and CdTe), kesterite (Cu-Zn-Sn-S(Se)) or oxide (e.g. Cu2O) absorbers [1], [2]. The motivation to use ZnMgO does not only arise from its appropriate and tunable electronic properties (such as the band-gap width), but also from the fact that it consists exclusively of earth-abundant and non-toxic elements. To achieve high power conversion efficiency in a solar cell, the band-offset between buffer layer and absorber is a critical parameter. The commonly used buffer layer material that matches absorbers of well-established thin film technologies, namely cadmium telluride (CdTe) and Cu-In-(Ga)-S(Se) (CIGS), is the toxic cadmium sulfide (CdS). The replacement of this enviromentally harmful material with alternatives that possess similar or better properties, is of outmost importance, as it will render TFPV more attractive for large scale implementation. ZnMgO has the benefit of a tunable band gap (3.37 - 4 eV) [3] depending on the Mg content in the ZnO lattice, which can be used to optimize band offsets with various absorber materials. So far, ZnMgO films were mainly deposited by vacuum techniques. In order to lower the production costs, simple methods without expensive equipment, like chemical bath deposition (CBD), are desired. The available literature on solution-processed Zn- MgO films is very limited. This thesis provides a fundamental investigation on the CBD of ZnMgO films. The solution chemistry was theoretically examined via speciation modelling. Experimentally it was found that deposition is only possible in a narrow pH window, due to the pH-dependent supersaturation of Zn(OH)2 as a precursor for ZnO. The highest amount of magnesium incorporated into the ZnO lattice was 2.1%, quantified via inductively coupled plasma - optical emission spectroscopy measurements, suggesting that further incorporation is not possible, due to the thermodynamic solubility limit of 4 mol% under equilibrium conditions [4]. Although the achieved band-gap variation of 3.43-3.55 eV for the deposited ZnMgO films is moderate, the smooth, orientated and highly transparent (>80%) films, have implementation potential as buffer layers in solar cells . It was further shown by X-ray diffraction, that the amount of certain Mg species in the solution defines the ZnO film morphology. The cause of this, is most likely faceselective adsorption of the bulky [MgCit]-, as well as Mg2+ and Mg(OH)+ species onto 11 specific ZnO faces. Film morphologies with dominant (100), (101) or (002) ZnO crystal faces were observed depending on the solution composition. Further, a correlation between Mg incorporation and the growth mechanism was proposed. The precise control of the surface morphology allows to optimize the absorber/buffer interface and therefore the conversion efficiency. The ZnMgO films were finally implemented into a Cu2O/ZnMgO type of solar cell, showing rectification characteristics and leading to measurable photovoltaic performance. 12
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34726/hss.2016.33702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34726/hss.2016.33702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2013 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Muljadi, E.; Singh, M.; Gevorgian, V.;doi: 10.2172/1096111
Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based onmore » the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1096111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1096111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: STEFANO, ALESSANDRINI;Data collected from a monocrystalline silicon photovoltaic (PV) plant installed on building Q2 at Area Science Park in the Basovizza campus located in Trieste, Italy. The data represent almost 9 years of real operating conditions of the PV plant. Every 15 minutes the DC side electrical PV system working parameters were recorded, in addition also ambient temperature, irradiance in the plane of the modules and panel temperatures were recorded. Data are periodically downloaded using a control software.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7115549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 47 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7115549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:Elsevier BV Authors: Koami Soulemane Hayibo; Joshua M. Pearce;To enable lower-cost building materials, a free-swinging bifacial vertical solar photovoltaic (PV) rack has been proposed, which complies with Canadian building codes and is the lowest-capital-cost agrivoltaics rack. The wind force applied to the free-swinging PV, however, causes it to have a non-90° tilt angle and no energy performance model accurately describes such a system. To provide a simulation model for the free-swinging PV, where wind speed and direction govern the array tilt angle, this study builds upon the open-source System Advisor Model (SAM) using Python. After the SAM python model is validated, a view factor model is used to calculate front and back irradiations. The findings reveal that free-swinging PV generates 12% more energy than vertical fixed-tilt PV. Free-swinging PV offers a levelized racking cost, which is 30% lower than that of other agrivoltaics racks including commercial fixed-tilt metal, optimized fixed-tilt wood, and seasonally-adjusted wood PV racking.
The University of We... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2023License: CC BYFull-Text: https://ir.lib.uwo.ca/electricalpub/602Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of We... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2023License: CC BYFull-Text: https://ir.lib.uwo.ca/electricalpub/602Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Advanced Engineering and Science Tariq Emad Ali; Mohammed A. Abdala; Ameer Al-Khaykan; Dhulfiqar A. Alwahab; Counsell M. Counsell;<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV array in three tracking positions are presented in this paper. This paper shows that the average electricity generated in North cities (Dohuk, Al-Sulaymaniyah, and Erbil) are less than the southern cities in the winter season (three positions) by about 40-50%. Iraq has a stable PV electrical generation during all the year in all regions except the North cities while the highest cities in electricity generation are (Najaf and Al-Anbar).</span>
International Journa... arrow_drop_down International Journal of Electrical and Computer Engineering (IJECE)Article . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijece.v13i4.pp3606-3612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert International Journa... arrow_drop_down International Journal of Electrical and Computer Engineering (IJECE)Article . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijece.v13i4.pp3606-3612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 02 Jul 2018Publisher:Mendeley Authors: Muniz, E;Measurements of electrical characteristics of a photovoltaic panel while outdoor, changing the number of covered/inactive cells and the number of bypass diodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/hssdg65gyr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/hssdg65gyr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1996 United StatesPublisher:IEEE Mitchell, Richard L.; Witt, C. Edwin; Thomas, Holly P.; Herwig, Lloyd O.; Ruby, Douglas S.; Aldrich, Clay C.;This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the worldwide competitiveness of the US PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value and reductions in the price of today's PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, US module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.1996.564350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.1996.564350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1998 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: McNutt, P.; Kroposki, B.; Hansen, R.; DeBlasio, R.;doi: 10.2172/656853
This document provides test methods and procedures for determining the performance of small stand-alone and utility-grid connected PV systems. The procedures in this document provide a common approach for evaluating whether a given PV system is suitable to perform the function it was designed and manufactured to accomplish and meet the application load. This test document fills a testing void and provides the catalyst and focus for establishing the technical foundation and bridging the institutional barriers needed to reduce uncertainty that a system`s performance will be what its designers and builders claim. The need for this document was recently made more apparent with the initiation of a PV Global Approval Program (PVGAP) at the international level and is in response to concerns that PV systems being fielded must meet performance standards and that these standards include system-level performance type tests. The title of these test procedures is prefaced with the word interim because experience in using the procedures is needed before a consensus standard is developed and accepted by the PV community through its activities with the IEEE Standards Coordinating Committee 21 (SCC21) and International Electrotechnical Commission Technical Committee 82 (IEC TC82) national and international standards-making bodies. Both entities have initiated projects to develop test standards and will need the technical basis and validation of test procedures such as those presented in this document before a consensus is achieved by the PV community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/656853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/656853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2013 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Kurtz, S.; Newmiller, J.; Kimber, A.; Flottemesch, R.; Riley, E.; Dierauf, T.; McKee, J.; Krishnani, P.;doi: 10.2172/1111193
Documentation of the energy yield of a large photovoltaic (PV) system over a substantial period can be useful to measure a performance guarantee, as an assessment of the health of the system, for verification of a performance model to then be applied to a new system, or for a variety of other purposes. Although the measurement of this performance metric might appear to be straight forward, there are a number of subtleties associated with variations in weather and imperfect data collection that complicate the determination and data analysis. A performance assessment is most valuable when it is completed with a very low uncertainty and when the subtleties are systematically addressed, yet currently no standard exists to guide this process. This report summarizes a draft methodology for an Energy Performance Evaluation Method, the philosophy behind the draft method, and the lessons that were learned by implementing the method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1111193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1111193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1999 United StatesPublisher:Office of Scientific and Technical Information (OSTI) McNutt, P.; Kroposki, B.; Hansen, R.; DeBlasio; R. (National Renewable Energy Laboratory); Thomas; M. (Sandia National Laboratories); Durand; S. (Florida Solar Energy Center); Rosenthal; A. (Southwest Technology Development Institute); Hutchinson; P. (Photovoltaics for Utility Scale Applications);doi: 10.2172/14449
This document provides the procedures for determining the performance of stand-alone PV systems. The procedures in this document provide a common approach for evaluating whether a given PV system is suitable to perform the function for which it was designed and manufactured to accomplish, and whether it will provide adequate power to run the load. These procedures cover small stand-alone PV systems. They cover complete outdoor system testing. Test results are valid only for the system that is tested.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/14449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/14449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2016Publisher:TU Wien Authors: Winkler, Nina;The subject of this thesis is the development of a chemical bath deposition (CBD) route for magnesium doped zinc oxide (ZnMgO) - a wide band, n-type semiconductor material. ZnMgO is relevant for a wide range of applications, among others for optical coatings, optoelectronic devices (such as touch screens and light emitting diodes) and thin film photovoltaics (TFPV). In the last case, where this thesis focuses, ZnMgO is mainly investigated as buffer layer, combined with chalcogenide (Cu-In-Ga-S(Se) and CdTe), kesterite (Cu-Zn-Sn-S(Se)) or oxide (e.g. Cu2O) absorbers [1], [2]. The motivation to use ZnMgO does not only arise from its appropriate and tunable electronic properties (such as the band-gap width), but also from the fact that it consists exclusively of earth-abundant and non-toxic elements. To achieve high power conversion efficiency in a solar cell, the band-offset between buffer layer and absorber is a critical parameter. The commonly used buffer layer material that matches absorbers of well-established thin film technologies, namely cadmium telluride (CdTe) and Cu-In-(Ga)-S(Se) (CIGS), is the toxic cadmium sulfide (CdS). The replacement of this enviromentally harmful material with alternatives that possess similar or better properties, is of outmost importance, as it will render TFPV more attractive for large scale implementation. ZnMgO has the benefit of a tunable band gap (3.37 - 4 eV) [3] depending on the Mg content in the ZnO lattice, which can be used to optimize band offsets with various absorber materials. So far, ZnMgO films were mainly deposited by vacuum techniques. In order to lower the production costs, simple methods without expensive equipment, like chemical bath deposition (CBD), are desired. The available literature on solution-processed Zn- MgO films is very limited. This thesis provides a fundamental investigation on the CBD of ZnMgO films. The solution chemistry was theoretically examined via speciation modelling. Experimentally it was found that deposition is only possible in a narrow pH window, due to the pH-dependent supersaturation of Zn(OH)2 as a precursor for ZnO. The highest amount of magnesium incorporated into the ZnO lattice was 2.1%, quantified via inductively coupled plasma - optical emission spectroscopy measurements, suggesting that further incorporation is not possible, due to the thermodynamic solubility limit of 4 mol% under equilibrium conditions [4]. Although the achieved band-gap variation of 3.43-3.55 eV for the deposited ZnMgO films is moderate, the smooth, orientated and highly transparent (>80%) films, have implementation potential as buffer layers in solar cells . It was further shown by X-ray diffraction, that the amount of certain Mg species in the solution defines the ZnO film morphology. The cause of this, is most likely faceselective adsorption of the bulky [MgCit]-, as well as Mg2+ and Mg(OH)+ species onto 11 specific ZnO faces. Film morphologies with dominant (100), (101) or (002) ZnO crystal faces were observed depending on the solution composition. Further, a correlation between Mg incorporation and the growth mechanism was proposed. The precise control of the surface morphology allows to optimize the absorber/buffer interface and therefore the conversion efficiency. The ZnMgO films were finally implemented into a Cu2O/ZnMgO type of solar cell, showing rectification characteristics and leading to measurable photovoltaic performance. 12
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34726/hss.2016.33702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34726/hss.2016.33702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2013 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Muljadi, E.; Singh, M.; Gevorgian, V.;doi: 10.2172/1096111
Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based onmore » the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1096111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1096111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: STEFANO, ALESSANDRINI;Data collected from a monocrystalline silicon photovoltaic (PV) plant installed on building Q2 at Area Science Park in the Basovizza campus located in Trieste, Italy. The data represent almost 9 years of real operating conditions of the PV plant. Every 15 minutes the DC side electrical PV system working parameters were recorded, in addition also ambient temperature, irradiance in the plane of the modules and panel temperatures were recorded. Data are periodically downloaded using a control software.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7115549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 47 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7115549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu