- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Shukla, Amritanshu; Kant, Karunesh; Biwole, Pascal Henry; Pitchumani, Ranga; Sharma, Atul;Considering the increasing gap between energy demand and clean energy supply availability, there is a strong need to impart novel design structures to effectively utilize the available resources and energy storage systems. Nature-inspired fin structures embedded with well-chosen phase change materials (PCM) can play an essential role in improving the heat transfer in thermal energy storage devices. The present work investigates the melting and solidification processes in a metallic heat exchanger filled with n-octadecane as working PCM, with tree-shaped fins. The study is conducted for various fin generation numbers, volume fractions, length ratios, and angles between the Y-shaped tree fin branches. The results are discussed in the form of melt fraction of PCM, heated surface average temperature variation, and thermal energy stored. The results clearly indicate that the heat transfer is significantly improved with increasing branches of the tree-structured fins because of an increased area available for heat transfer. This study can be utilized to enhance the performance of PCM embedded thermal energy storage devices.
MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2022License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2022License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Pascal Henry Biwole; Patrick Achard; Kevin Nocentini;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Shukla, Amritanshu; Kant, Karunesh; Biwole, Pascal Henry; Pitchumani, Ranga; Sharma, Atul;Considering the increasing gap between energy demand and clean energy supply availability, there is a strong need to impart novel design structures to effectively utilize the available resources and energy storage systems. Nature-inspired fin structures embedded with well-chosen phase change materials (PCM) can play an essential role in improving the heat transfer in thermal energy storage devices. The present work investigates the melting and solidification processes in a metallic heat exchanger filled with n-octadecane as working PCM, with tree-shaped fins. The study is conducted for various fin generation numbers, volume fractions, length ratios, and angles between the Y-shaped tree fin branches. The results are discussed in the form of melt fraction of PCM, heated surface average temperature variation, and thermal energy stored. The results clearly indicate that the heat transfer is significantly improved with increasing branches of the tree-structured fins because of an increased area available for heat transfer. This study can be utilized to enhance the performance of PCM embedded thermal energy storage devices.
MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2022License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert MINES ParisTech: Ope... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2022License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Pascal Henry Biwole; Patrick Achard; Kevin Nocentini;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.03.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu