- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article 2022 China (People's Republic of)Publisher:Elsevier BV Mengmeng Wang; Kang Liu; Shanta Dutta; Daniel S. Alessi; Jörg Rinklebe; Yong Sik Ok; Daniel C.W. Tsang;The limited fossil fuel supply toward carbon neutrality has driven tremendous efforts to replace fuel vehicles by electric ones. The recycling of retired power batteries, a core energy supply component of electric vehicles (EVs), is necessary for developing a sustainable EV industry. Here, we comprehensively review the current status and technical challenges of recycling lithium iron phosphate (LFP) batteries. The review focuses on: 1) environmental risks of LFP batteries, 2) cascade utilization, 3) separation of cathode material and aluminium foil, 4) lithium (Li) extraction technologies, and 5) regeneration and transformation of cathode materials. Detailed analyses are elaborated with case examples and technical challenges. Our critical analysis demonstrates that compared with retired lithium nickel cobalt manganese oxide (NCM) batteries, LFP batteries do not contain the high-value elements such as Co and Ni, so the economic drive for LFP recycling is compromised although future market prospects are substantial. It is of great practical significance to develop low-carbon and cost-effective Li extraction technologies and regeneration processes for cathode materials to ensure a sustainable and stable development of the LFP battery and EV industry.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu137 citations 137 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 China (People's Republic of), United Kingdom, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Dutta, Shanta; Zhang, Qiaozhi; Cao, Yang; Wu, Chunfei; Moustakas, Konstantinos; Zhang, Shicheng; Wong, Ka-Hing; Tsang, Daniel C.W.;pmid: 35623603
Lignocellulosic paper waste constitutes a major waste stream globally, which should be valorised for chemical production. However, paper properties (e.g., feedstock composition, cellulosic crystallinity, and thermal stability/degradability) vary with raw materials and pulping processes. This study investigated levulinic acid (LA), hydroxymethylfurfural (HMF), and furfural production by H2SO4 and FeCl3 catalysed conversion of nine types of paper wastes in a green solvent system (1:1 γ-valerolactone/water). At 160-180 °C for 1-20 min, ∼23-27 wt% LA yield was achieved from sanitary papers, tracing/parchment paper, and paper food box mainly containing crystalline cellulose, while a lower LA yield (∼10-20 wt%) was obtained from other paper wastes with high contents of ash and lignin. A higher selectivity towards HMF (∼12 mol%) was achieved in the presence of FeCl3. A furfural yield of ∼ 4-7.5 wt% was also obtained from the hemicellulose content. This study elucidates crucial factors and desirable characteristics of paper waste for catalytic valorisation.
Bioresource Technolo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 China (People's Republic of)Publisher:Elsevier BV Mengmeng Wang; Kang Liu; Shanta Dutta; Daniel S. Alessi; Jörg Rinklebe; Yong Sik Ok; Daniel C.W. Tsang;The limited fossil fuel supply toward carbon neutrality has driven tremendous efforts to replace fuel vehicles by electric ones. The recycling of retired power batteries, a core energy supply component of electric vehicles (EVs), is necessary for developing a sustainable EV industry. Here, we comprehensively review the current status and technical challenges of recycling lithium iron phosphate (LFP) batteries. The review focuses on: 1) environmental risks of LFP batteries, 2) cascade utilization, 3) separation of cathode material and aluminium foil, 4) lithium (Li) extraction technologies, and 5) regeneration and transformation of cathode materials. Detailed analyses are elaborated with case examples and technical challenges. Our critical analysis demonstrates that compared with retired lithium nickel cobalt manganese oxide (NCM) batteries, LFP batteries do not contain the high-value elements such as Co and Ni, so the economic drive for LFP recycling is compromised although future market prospects are substantial. It is of great practical significance to develop low-carbon and cost-effective Li extraction technologies and regeneration processes for cathode materials to ensure a sustainable and stable development of the LFP battery and EV industry.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu137 citations 137 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 China (People's Republic of), United Kingdom, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Dutta, Shanta; Zhang, Qiaozhi; Cao, Yang; Wu, Chunfei; Moustakas, Konstantinos; Zhang, Shicheng; Wong, Ka-Hing; Tsang, Daniel C.W.;pmid: 35623603
Lignocellulosic paper waste constitutes a major waste stream globally, which should be valorised for chemical production. However, paper properties (e.g., feedstock composition, cellulosic crystallinity, and thermal stability/degradability) vary with raw materials and pulping processes. This study investigated levulinic acid (LA), hydroxymethylfurfural (HMF), and furfural production by H2SO4 and FeCl3 catalysed conversion of nine types of paper wastes in a green solvent system (1:1 γ-valerolactone/water). At 160-180 °C for 1-20 min, ∼23-27 wt% LA yield was achieved from sanitary papers, tracing/parchment paper, and paper food box mainly containing crystalline cellulose, while a lower LA yield (∼10-20 wt%) was obtained from other paper wastes with high contents of ash and lignin. A higher selectivity towards HMF (∼12 mol%) was achieved in the presence of FeCl3. A furfural yield of ∼ 4-7.5 wt% was also obtained from the hemicellulose content. This study elucidates crucial factors and desirable characteristics of paper waste for catalytic valorisation.
Bioresource Technolo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu