- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Funded by:DFGDFGEmma Ladouceur; Emma Ladouceur; Shane A. Blowes; Eric W. Seabloom; Jonathan M. Chase; Harald Auge; W. Stanley Harpole; W. Stanley Harpole; Christiane Roscher;doi: 10.1111/ele.13566
pmid: 32567139
AbstractSeed dispersal limitation, which can be exacerbated by a number of anthropogenic causes, can result in local communities having fewer species than they might potentially support, representing a potential diversity deficit. The link between processes that shape natural variation in diversity, such as dispersal limitation, and the consequent effects on productivity is less well known. Here, we synthesised data from 12 seed addition experiments in grassland communities to examine the influence of reducing seed dispersal limitation (from 1 to 60 species added across experiments) on species richness and productivity. For every 10 species of seed added, we found that species richness increased by about two species. However, the increase in species richness by overcoming seed limitation did not lead to a concomitant increase in above‐ground biomass production. This highlights the need to consider the relationship between biodiversity and ecosystem functioning in a pluralistic way that considers both the processes that shape diversity and productivity simultaneously in naturally assembled communities.
Share_it arrow_drop_down Share_itArticle . 2020License: CC BYFull-Text: http://dx.doi.org/10.25673/38600Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Share_it arrow_drop_down Share_itArticle . 2020License: CC BYFull-Text: http://dx.doi.org/10.25673/38600Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Netherlands, United States, Argentina, United States, Netherlands, ArgentinaPublisher:Wiley Elizabeth T. Borer; Lori A. Biederman; Eric W. Seabloom; W. Stanley Harpole; W. Stanley Harpole; John M. Dwyer; John M. Dwyer; Marc W. Cadotte; Brent J. Danielson; Brent Mortensen; Nicole Hagenah; Pablo Luis Peri; Pablo Luis Peri; Carlos Alberto Arnillas; Juan Alberti; Yann Hautier;handle: 11336/90540 , 20.500.12876/23197
Abstract Reductions in community evenness can lead to local extinctions as dominant species exclude subordinate species; however, herbivores can prevent competitive exclusion by consuming otherwise dominant plant species, thus increasing evenness. While these predictions logically result from chronic, gradual reductions in evenness, rapid, temporary pulses of dominance may also reduce species richness. Short pulses of dominance can occur as biotic or abiotic conditions temporarily favour one or a few species, manifested as increased temporal variability (the inverse of temporal stability) in community evenness. Here, we tested whether consumers help maintain plant diversity by reducing the temporal variability in community evenness. We tested our hypothesis by reducing herbivore abundance in a detailed study of a developing, tallgrass prairie restoration. To assess the broader implications of the importance of herbivory on community evenness as well as potential mechanisms, we paired this study with a global herbivore reduction experiment. We found that herbivores maintained plant richness in a tallgrass prairie restoration by limiting temporary pulses in dominance by a single species. Dominance by an annual species in a single year was negatively associated with species richness, suggesting that short pulses of dominance may be sufficient to exclude subordinate species. The generality of this site‐level relationship was supported by the global experiment in which inter‐annual variability in evenness declined in the presence of vertebrate herbivores over timeframes ranging in length from 2 to 5 years, preventing declines in species richness. Furthermore, inter‐annual variability of community evenness was also negatively associated with pre‐treatment species richness. Synthesis. A loss or reduction of herbivores can destabilize plant communities by allowing brief periods of dominance by one or a few species, potentially triggering a feedback cycle of dominance and extinction. Such cycles may not occur immediately following the loss of herbivores, being delayed until conditions allow temporary periods of dominance by a subset of plant species.
Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Funded by:NSF | LTER: Multi-decadal resp..., NSF | LTER: Biodiversity, Multi...NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderMax M. Zaret; Molly A. Kuhs; Jonathan C. Anderson; Eric W. Seabloom; Elizabeth T. Borer; Linda L. Kinkel;AbstractPlant biodiversity and consumers are important mediators of energy and carbon fluxes in grasslands, but their effects on within‐season variation of plant biomass production are poorly understood. Here we measure variation in control of plant biomass by consumers and plant diversity throughout the growing season and their impact on plant biomass phenology. To do this, we analysed 5 years of biweekly biomass measures (NDVI) in an experiment manipulating plant species richness and three consumer groups (foliar fungi, soil fungi and arthropods). Positive plant diversity effects on biomass were greatest early in the growing season, whereas the foliar fungicide and insecticide treatments increased biomass most late in the season. Additionally, diverse plots and plots containing foliar fungi reached maximum biomass almost a month earlier than monocultures and plots treated with foliar fungicide, demonstrating the dynamic and interactive roles that biodiversity and consumers play in regulating biomass production through the growing season.
Ecology Letters arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Argentina, South Africa, Netherlands, Netherlands, Argentina, Australia, United States, United States, United KingdomPublisher:Wiley Publicly fundedFunded by:NSF | LTER: Biodiversity, Multi..., NSF | RCN: Coordination of the ..., NSF | LTER: Multi-decadal resp... +1 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,FCT| LA 1Andrew S. MacDougall; Eric W. Seabloom; Nicole Hagenah; Philip A. Fay; Ramesh Laungani; Marc W. Cadotte; Laura E. Dee; Yvonne M. Buckley; Martin Schuetz; W. Stanley Harpole; W. Stanley Harpole; Peter B. Adler; Scott L. Collins; Johannes M. H. Knops; John W. Morgan; Elizabeth T. Borer; Anita C. Risch; Andy Hector; Forest Isbell; Sarah E. Hobbie; Carly J. Stevens; Jennifer Firn; Joslin L. Moore; Yann Hautier; Suzanne M. Prober; Kimberly J. Komatsu; Timothy Ohlert; Rebecca L. McCulley; Lori A. Biederman; Juan Alberti;AbstractHuman activities are enriching many of Earth’s ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient‐induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5–11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient‐induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short‐term experiments may underestimate the long‐term nutrient enrichment effects on global grassland ecosystems.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2021 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Lancaster EPrintsQueensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2021 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Lancaster EPrintsQueensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Argentina, United Kingdom, Netherlands, Australia, United States, ArgentinaPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Biodiversity, Multi..., FCT | LA 1, NSF | RCN: Coordination of the ...NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,FCT| LA 1 ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersPeter B. Adler; Yann Hautier; Elizabeth T. Borer; Kendi F. Davies; Suzanne M. Prober; Lauren L. Sullivan; Rebecca L. McCulley; M. Schuetz; Nicole Hagenah; Ryan J. Williams; Marc W. Cadotte; Elsa E. Cleland; Jonathan D. Bakker; Anita C. Risch; Helmut Hillebrand; Kevin P. Kirkman; Peter D. Wragg; Chengjin Chu; Enrique J. Chaneton; Daniel S. Gruner; Carla M. D'Antonio; Carly J. Stevens; Joslin L. Moore; Philip A. Fay; Johannes M. H. Knops; Kimberly J. La Pierre; John W. Morgan; Andrew S. MacDougall; Eric W. Seabloom; Jennifer Firn; W. Stanley Harpole; W. Stanley Harpole; Jonathan M. Chase; Eric M. Lind;Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81566/1/Harpole_Niche_Dimension_Resubmission_Final_3.1.pdfData sources: Lancaster EPrintsUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/0hw2k55xData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaLancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 419 citations 419 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81566/1/Harpole_Niche_Dimension_Resubmission_Final_3.1.pdfData sources: Lancaster EPrintsUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/0hw2k55xData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaLancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, Australia, NetherlandsPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect..., NSF | LTER: Biodiversity, Multi..., NSF | RCN: Coordination of the ...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersGrace, James B.; Anderson, T. Michael; Seabloom, Eric W.; Borer, Elizabeth T.; Adler, Peter B.; Harpole, W. Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M.; Paertel, Meelis; Bakker, Jonathan D.; Buckley, Yvonne M.; Crawley, Michael J.; Damschen, Ellen I.; Davies, Kendi F.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hector, Andy; Knops, Johannes M. H.; MacDougall, Andrew S.; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Smith, Melinda D.;doi: 10.1038/nature16524
pmid: 26760203
How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.
Nature Cell Biology arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 648 citations 648 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Cell Biology arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Phoebe L. Zarnetske; Jeremy Mull; Eric W. Seabloom; Sally D. Hacker; Peter Ruggiero;doi: 10.1111/gcb.12078
pmid: 23504839
AbstractThe world's coastal habitats are critical to human well‐being, but are also highly sensitive to human habitat alterations and climate change. In particular, global climate is increasing sea levels and potentially altering storm intensities, which may result in increased risk of flooding in coastal areas. In the Pacific Northwest (USA), coastal dunes that protect the coast from flooding are largely the product of a grass introduced from Europe over a century ago (Ammophila arenaria). An introduced congener (A. breviligulata) is displacing A. arenaria and reducing dune height. Here we quantify the relative exposure to storm‐wave induced dune overtopping posed by the A. breviligulata invasion in the face of projected multi‐decadal changes in sea level and storm intensity. In our models, altered storm intensity was the largest driver of overtopping extent, however the invasion by A. breviligulata tripled the number of areas vulnerable to overtopping and posed a fourfold larger exposure than sea‐level rise over multi‐decadal time scales. Our work demonstrates the importance of a transdisciplinary approach that draws on insights from ecology, geomorphology, and civil engineering to assess the vulnerability of ecosystem services in light of global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Spain, SpainPublisher:Wiley Funded by:FCT | LA 1FCT| LA 1Anvar Sanaei; Emma J. Sayer; Zuoqiang Yuan; Hugo Saiz; Manuel Delgado‐Baquerizo; Majid Sadeghinia; Parvaneh Ashouri; Sahar Ghafari; Hasan Kaboli; Mansoureh Kargar; Eric W. Seabloom; Arshad Ali;AbstractPlant diversity supports multiple ecosystem functions, including carbon sequestration. Recent shifts in plant diversity in rangelands due to increased grazing pressure and climate changes have the potential to impact the sequestration of carbon in arid to semi‐humid regions worldwide. However, plant diversity, grazing intensity and carbon storage are also influenced by environmental factors such as nutrient availability, climate and topography. The complexity of these interactions limits our ability to fully assess the impacts of grazing on biodiversity–ecosystem function (BEF) relationships.We assessed how grazing intensity modifies BEF relationships by determining the links between plant diversity and ecosystem carbon stocks (plant and soil carbon) across broad environmental gradients and different plant growth forms. To achieve this, we surveyed 1493 quadrats across 10 rangelands, covering an area of 23,756 ha in northern Iran.We show that above‐ground carbon stocks increased with plant diversity across topographic, climatic and soil fertility gradients. The relationship between above‐ground carbon stocks and plant diversity was strongest for forbs, followed by shrubs and grasses. Soil carbon stocks increased strongly with soil fertility across sites, but aridity, grazing, plant diversity and topography were also important in explaining variation in soil carbon stocks. Importantly, above‐ground and soil carbon stocks declined at high grazing intensity, and grazing modified the relationship between plant diversity and carbon stocks regardless of differences in abiotic conditions across sites.Our study demonstrates that relationships between plant diversity and ecosystem carbon stocks persist across gradients of aridity, topography and soil fertility, but the relationships are modified by grazing intensity. Our findings suggest that potential losses in plant diversity under grazing intensification could reduce ecosystem carbon storage across wide areas of arid to semi‐humid rangelands. We discuss the potential mechanisms underpinning rangeland BEF relationships to stimulate future research.Read the freePlain Language Summaryfor this article on the Journal blog.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2023Data sources: Digital Repository of University of ZaragozaFunctional EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository of University of Zaragoza (ZAGUAN)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 125 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2023Data sources: Digital Repository of University of ZaragozaFunctional EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository of University of Zaragoza (ZAGUAN)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Mayank Kohli; Elizabeth T. Borer; Linda Kinkel; Eric W. Seabloom;doi: 10.1111/ele.13232
pmid: 30747475
AbstractTheory predicts that consumers may stabilise or destabilise plant production depending on model assumptions, and tests in aquatic food webs suggest that trophic interactions are stabilising. We quantified the effects of trophic interactions on temporal variability (standard deviation) and temporal stability (mean/standard deviation) of grassland biomass production and the plant diversity–stability relationship by experimentally removing heterotrophs (large vertebrates, arthropods, foliar and soil fungi) from naturally and experimentally assembled grasslands of varying diversity. In both grassland types, trophic interactions proportionately decreased plant community biomass mean and variability over the course of 6 years, leading to no net change in temporal stability or the plant diversity–stability relationship. Heterotrophs also mediated plant coexistence; their removal reduced diversity in naturally assembled grasslands. Thus, herbivores and fungi reduce biomass production, concurrently reducing the temporal variability of energy and material fluxes. Because of this coupling, grassland stability is robust to large food web perturbations.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Funded by:DFGDFGEmma Ladouceur; Emma Ladouceur; Shane A. Blowes; Eric W. Seabloom; Jonathan M. Chase; Harald Auge; W. Stanley Harpole; W. Stanley Harpole; Christiane Roscher;doi: 10.1111/ele.13566
pmid: 32567139
AbstractSeed dispersal limitation, which can be exacerbated by a number of anthropogenic causes, can result in local communities having fewer species than they might potentially support, representing a potential diversity deficit. The link between processes that shape natural variation in diversity, such as dispersal limitation, and the consequent effects on productivity is less well known. Here, we synthesised data from 12 seed addition experiments in grassland communities to examine the influence of reducing seed dispersal limitation (from 1 to 60 species added across experiments) on species richness and productivity. For every 10 species of seed added, we found that species richness increased by about two species. However, the increase in species richness by overcoming seed limitation did not lead to a concomitant increase in above‐ground biomass production. This highlights the need to consider the relationship between biodiversity and ecosystem functioning in a pluralistic way that considers both the processes that shape diversity and productivity simultaneously in naturally assembled communities.
Share_it arrow_drop_down Share_itArticle . 2020License: CC BYFull-Text: http://dx.doi.org/10.25673/38600Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Share_it arrow_drop_down Share_itArticle . 2020License: CC BYFull-Text: http://dx.doi.org/10.25673/38600Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Netherlands, United States, Argentina, United States, Netherlands, ArgentinaPublisher:Wiley Elizabeth T. Borer; Lori A. Biederman; Eric W. Seabloom; W. Stanley Harpole; W. Stanley Harpole; John M. Dwyer; John M. Dwyer; Marc W. Cadotte; Brent J. Danielson; Brent Mortensen; Nicole Hagenah; Pablo Luis Peri; Pablo Luis Peri; Carlos Alberto Arnillas; Juan Alberti; Yann Hautier;handle: 11336/90540 , 20.500.12876/23197
Abstract Reductions in community evenness can lead to local extinctions as dominant species exclude subordinate species; however, herbivores can prevent competitive exclusion by consuming otherwise dominant plant species, thus increasing evenness. While these predictions logically result from chronic, gradual reductions in evenness, rapid, temporary pulses of dominance may also reduce species richness. Short pulses of dominance can occur as biotic or abiotic conditions temporarily favour one or a few species, manifested as increased temporal variability (the inverse of temporal stability) in community evenness. Here, we tested whether consumers help maintain plant diversity by reducing the temporal variability in community evenness. We tested our hypothesis by reducing herbivore abundance in a detailed study of a developing, tallgrass prairie restoration. To assess the broader implications of the importance of herbivory on community evenness as well as potential mechanisms, we paired this study with a global herbivore reduction experiment. We found that herbivores maintained plant richness in a tallgrass prairie restoration by limiting temporary pulses in dominance by a single species. Dominance by an annual species in a single year was negatively associated with species richness, suggesting that short pulses of dominance may be sufficient to exclude subordinate species. The generality of this site‐level relationship was supported by the global experiment in which inter‐annual variability in evenness declined in the presence of vertebrate herbivores over timeframes ranging in length from 2 to 5 years, preventing declines in species richness. Furthermore, inter‐annual variability of community evenness was also negatively associated with pre‐treatment species richness. Synthesis. A loss or reduction of herbivores can destabilize plant communities by allowing brief periods of dominance by one or a few species, potentially triggering a feedback cycle of dominance and extinction. Such cycles may not occur immediately following the loss of herbivores, being delayed until conditions allow temporary periods of dominance by a subset of plant species.
Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Funded by:NSF | LTER: Multi-decadal resp..., NSF | LTER: Biodiversity, Multi...NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderMax M. Zaret; Molly A. Kuhs; Jonathan C. Anderson; Eric W. Seabloom; Elizabeth T. Borer; Linda L. Kinkel;AbstractPlant biodiversity and consumers are important mediators of energy and carbon fluxes in grasslands, but their effects on within‐season variation of plant biomass production are poorly understood. Here we measure variation in control of plant biomass by consumers and plant diversity throughout the growing season and their impact on plant biomass phenology. To do this, we analysed 5 years of biweekly biomass measures (NDVI) in an experiment manipulating plant species richness and three consumer groups (foliar fungi, soil fungi and arthropods). Positive plant diversity effects on biomass were greatest early in the growing season, whereas the foliar fungicide and insecticide treatments increased biomass most late in the season. Additionally, diverse plots and plots containing foliar fungi reached maximum biomass almost a month earlier than monocultures and plots treated with foliar fungicide, demonstrating the dynamic and interactive roles that biodiversity and consumers play in regulating biomass production through the growing season.
Ecology Letters arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Argentina, South Africa, Netherlands, Netherlands, Argentina, Australia, United States, United States, United KingdomPublisher:Wiley Publicly fundedFunded by:NSF | LTER: Biodiversity, Multi..., NSF | RCN: Coordination of the ..., NSF | LTER: Multi-decadal resp... +1 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,FCT| LA 1Andrew S. MacDougall; Eric W. Seabloom; Nicole Hagenah; Philip A. Fay; Ramesh Laungani; Marc W. Cadotte; Laura E. Dee; Yvonne M. Buckley; Martin Schuetz; W. Stanley Harpole; W. Stanley Harpole; Peter B. Adler; Scott L. Collins; Johannes M. H. Knops; John W. Morgan; Elizabeth T. Borer; Anita C. Risch; Andy Hector; Forest Isbell; Sarah E. Hobbie; Carly J. Stevens; Jennifer Firn; Joslin L. Moore; Yann Hautier; Suzanne M. Prober; Kimberly J. Komatsu; Timothy Ohlert; Rebecca L. McCulley; Lori A. Biederman; Juan Alberti;AbstractHuman activities are enriching many of Earth’s ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient‐induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5–11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient‐induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short‐term experiments may underestimate the long‐term nutrient enrichment effects on global grassland ecosystems.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2021 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Lancaster EPrintsQueensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2021 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Lancaster EPrintsQueensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Argentina, United Kingdom, Netherlands, Australia, United States, ArgentinaPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Biodiversity, Multi..., FCT | LA 1, NSF | RCN: Coordination of the ...NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,FCT| LA 1 ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersPeter B. Adler; Yann Hautier; Elizabeth T. Borer; Kendi F. Davies; Suzanne M. Prober; Lauren L. Sullivan; Rebecca L. McCulley; M. Schuetz; Nicole Hagenah; Ryan J. Williams; Marc W. Cadotte; Elsa E. Cleland; Jonathan D. Bakker; Anita C. Risch; Helmut Hillebrand; Kevin P. Kirkman; Peter D. Wragg; Chengjin Chu; Enrique J. Chaneton; Daniel S. Gruner; Carla M. D'Antonio; Carly J. Stevens; Joslin L. Moore; Philip A. Fay; Johannes M. H. Knops; Kimberly J. La Pierre; John W. Morgan; Andrew S. MacDougall; Eric W. Seabloom; Jennifer Firn; W. Stanley Harpole; W. Stanley Harpole; Jonathan M. Chase; Eric M. Lind;Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81566/1/Harpole_Niche_Dimension_Resubmission_Final_3.1.pdfData sources: Lancaster EPrintsUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/0hw2k55xData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaLancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 419 citations 419 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81566/1/Harpole_Niche_Dimension_Resubmission_Final_3.1.pdfData sources: Lancaster EPrintsUniversity of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/0hw2k55xData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaLancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, Australia, NetherlandsPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect..., NSF | LTER: Biodiversity, Multi..., NSF | RCN: Coordination of the ...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersGrace, James B.; Anderson, T. Michael; Seabloom, Eric W.; Borer, Elizabeth T.; Adler, Peter B.; Harpole, W. Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M.; Paertel, Meelis; Bakker, Jonathan D.; Buckley, Yvonne M.; Crawley, Michael J.; Damschen, Ellen I.; Davies, Kendi F.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hector, Andy; Knops, Johannes M. H.; MacDougall, Andrew S.; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Smith, Melinda D.;doi: 10.1038/nature16524
pmid: 26760203
How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.
Nature Cell Biology arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 648 citations 648 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Cell Biology arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Phoebe L. Zarnetske; Jeremy Mull; Eric W. Seabloom; Sally D. Hacker; Peter Ruggiero;doi: 10.1111/gcb.12078
pmid: 23504839
AbstractThe world's coastal habitats are critical to human well‐being, but are also highly sensitive to human habitat alterations and climate change. In particular, global climate is increasing sea levels and potentially altering storm intensities, which may result in increased risk of flooding in coastal areas. In the Pacific Northwest (USA), coastal dunes that protect the coast from flooding are largely the product of a grass introduced from Europe over a century ago (Ammophila arenaria). An introduced congener (A. breviligulata) is displacing A. arenaria and reducing dune height. Here we quantify the relative exposure to storm‐wave induced dune overtopping posed by the A. breviligulata invasion in the face of projected multi‐decadal changes in sea level and storm intensity. In our models, altered storm intensity was the largest driver of overtopping extent, however the invasion by A. breviligulata tripled the number of areas vulnerable to overtopping and posed a fourfold larger exposure than sea‐level rise over multi‐decadal time scales. Our work demonstrates the importance of a transdisciplinary approach that draws on insights from ecology, geomorphology, and civil engineering to assess the vulnerability of ecosystem services in light of global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Spain, SpainPublisher:Wiley Funded by:FCT | LA 1FCT| LA 1Anvar Sanaei; Emma J. Sayer; Zuoqiang Yuan; Hugo Saiz; Manuel Delgado‐Baquerizo; Majid Sadeghinia; Parvaneh Ashouri; Sahar Ghafari; Hasan Kaboli; Mansoureh Kargar; Eric W. Seabloom; Arshad Ali;AbstractPlant diversity supports multiple ecosystem functions, including carbon sequestration. Recent shifts in plant diversity in rangelands due to increased grazing pressure and climate changes have the potential to impact the sequestration of carbon in arid to semi‐humid regions worldwide. However, plant diversity, grazing intensity and carbon storage are also influenced by environmental factors such as nutrient availability, climate and topography. The complexity of these interactions limits our ability to fully assess the impacts of grazing on biodiversity–ecosystem function (BEF) relationships.We assessed how grazing intensity modifies BEF relationships by determining the links between plant diversity and ecosystem carbon stocks (plant and soil carbon) across broad environmental gradients and different plant growth forms. To achieve this, we surveyed 1493 quadrats across 10 rangelands, covering an area of 23,756 ha in northern Iran.We show that above‐ground carbon stocks increased with plant diversity across topographic, climatic and soil fertility gradients. The relationship between above‐ground carbon stocks and plant diversity was strongest for forbs, followed by shrubs and grasses. Soil carbon stocks increased strongly with soil fertility across sites, but aridity, grazing, plant diversity and topography were also important in explaining variation in soil carbon stocks. Importantly, above‐ground and soil carbon stocks declined at high grazing intensity, and grazing modified the relationship between plant diversity and carbon stocks regardless of differences in abiotic conditions across sites.Our study demonstrates that relationships between plant diversity and ecosystem carbon stocks persist across gradients of aridity, topography and soil fertility, but the relationships are modified by grazing intensity. Our findings suggest that potential losses in plant diversity under grazing intensification could reduce ecosystem carbon storage across wide areas of arid to semi‐humid rangelands. We discuss the potential mechanisms underpinning rangeland BEF relationships to stimulate future research.Read the freePlain Language Summaryfor this article on the Journal blog.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2023Data sources: Digital Repository of University of ZaragozaFunctional EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository of University of Zaragoza (ZAGUAN)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 125 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2023Data sources: Digital Repository of University of ZaragozaFunctional EcologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository of University of Zaragoza (ZAGUAN)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.14270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors: Mayank Kohli; Elizabeth T. Borer; Linda Kinkel; Eric W. Seabloom;doi: 10.1111/ele.13232
pmid: 30747475
AbstractTheory predicts that consumers may stabilise or destabilise plant production depending on model assumptions, and tests in aquatic food webs suggest that trophic interactions are stabilising. We quantified the effects of trophic interactions on temporal variability (standard deviation) and temporal stability (mean/standard deviation) of grassland biomass production and the plant diversity–stability relationship by experimentally removing heterotrophs (large vertebrates, arthropods, foliar and soil fungi) from naturally and experimentally assembled grasslands of varying diversity. In both grassland types, trophic interactions proportionately decreased plant community biomass mean and variability over the course of 6 years, leading to no net change in temporal stability or the plant diversity–stability relationship. Heterotrophs also mediated plant coexistence; their removal reduced diversity in naturally assembled grasslands. Thus, herbivores and fungi reduce biomass production, concurrently reducing the temporal variability of energy and material fluxes. Because of this coupling, grassland stability is robust to large food web perturbations.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu