- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Aijie Wang; Bo Wang; Yifeng Zhang; Wenzong Liu;pmid: 32179273
Electroactive microorganisms (EAMs) can act as pseudocapacitor to store energy and discharge electrons on need, while electromethanogens acting as receptor are able to utilize electrons, protons and carbon dioxide for methanization. However, external energy is required to overcome thermodynamical barriers for electromethanogenesis. Herein, electro-driving power by solar light was established to accelerate conversion of waste organics to bioenergy. The intermittent power supply modes were elucidated for favourable performances (e.g., current density, methane production rate, energy recovery efficiencies and economic evaluation), compared with the control driven by continuous applied voltage. It was found that natural intermittent solar-powered mode was more beneficial for microorganisms involved in electron transfer and energy recovery than manual sharp on-off mode. Electrochemistry analysis unrevealed that a higher redox current and lower resistance were exhibited under the solar-powered mode. A high charge storage capacity and electron mobility were found through cytochrome c content and live cells ratio in the solar-power assisted bioreactor. The intermittent power driving modes can regulate electron transfer proteins with capacitive storage behavior in biomass, which helps to understand the responses of functional communities on the stress of intermittent electric field. These findings indicate a promising perspective of microbial biotechnology driven by solar power to boost bioenergy recovery from waste/wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2020.115696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2020.115696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Hafiz Muhammad Adeel Sharif; Yang-Cheng Ding; Bo Wang; Hao-Yi Cheng; Li-Hui Yang; Shi-Gang Su; Aijie Wang; Ran Zeng;pmid: 31174109
A bioelectrochemical system (BES) is a technology with potential for accelerating the degradation of recalcitrant compounds, the components and configurations of which are important for treatment performance. In the present work, a membraneless sleeve-type BES (termed BioE) was designed for the treatment of synthetic coal gasification wastewater (CGW, phenol as a model pollutant) and real CGW. Compared with the biological control (termed Bio), the phenol removal rate and COD removal efficiency increased by 2.6 and 2.1 fold in the BioE, respectively. However, the coulombic efficiency of this system was relatively low, ranging from 0.42% to 2.6%. This combination of results indicated that anode respiration was not the main process in the BioE. The increased CH4 production and higher levels of methanogens obtained from the BioE confirmed that the methanogenic process proceeded, possibly facilitated by the diffusion of H2 from the cathode to the anode. This study provides new insight into biocathode function for COD oxidation removal in BESs. Moreover, this study indicates that pursuing a high coulombic efficiency may not be necessary for wastewater treatment, as it consumes less energy at the lower value.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioelechem.2019.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioelechem.2019.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Aijie Wang; Bo Wang; Yifeng Zhang; Wenzong Liu;pmid: 32179273
Electroactive microorganisms (EAMs) can act as pseudocapacitor to store energy and discharge electrons on need, while electromethanogens acting as receptor are able to utilize electrons, protons and carbon dioxide for methanization. However, external energy is required to overcome thermodynamical barriers for electromethanogenesis. Herein, electro-driving power by solar light was established to accelerate conversion of waste organics to bioenergy. The intermittent power supply modes were elucidated for favourable performances (e.g., current density, methane production rate, energy recovery efficiencies and economic evaluation), compared with the control driven by continuous applied voltage. It was found that natural intermittent solar-powered mode was more beneficial for microorganisms involved in electron transfer and energy recovery than manual sharp on-off mode. Electrochemistry analysis unrevealed that a higher redox current and lower resistance were exhibited under the solar-powered mode. A high charge storage capacity and electron mobility were found through cytochrome c content and live cells ratio in the solar-power assisted bioreactor. The intermittent power driving modes can regulate electron transfer proteins with capacitive storage behavior in biomass, which helps to understand the responses of functional communities on the stress of intermittent electric field. These findings indicate a promising perspective of microbial biotechnology driven by solar power to boost bioenergy recovery from waste/wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2020.115696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2020.115696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Hafiz Muhammad Adeel Sharif; Yang-Cheng Ding; Bo Wang; Hao-Yi Cheng; Li-Hui Yang; Shi-Gang Su; Aijie Wang; Ran Zeng;pmid: 31174109
A bioelectrochemical system (BES) is a technology with potential for accelerating the degradation of recalcitrant compounds, the components and configurations of which are important for treatment performance. In the present work, a membraneless sleeve-type BES (termed BioE) was designed for the treatment of synthetic coal gasification wastewater (CGW, phenol as a model pollutant) and real CGW. Compared with the biological control (termed Bio), the phenol removal rate and COD removal efficiency increased by 2.6 and 2.1 fold in the BioE, respectively. However, the coulombic efficiency of this system was relatively low, ranging from 0.42% to 2.6%. This combination of results indicated that anode respiration was not the main process in the BioE. The increased CH4 production and higher levels of methanogens obtained from the BioE confirmed that the methanogenic process proceeded, possibly facilitated by the diffusion of H2 from the cathode to the anode. This study provides new insight into biocathode function for COD oxidation removal in BESs. Moreover, this study indicates that pursuing a high coulombic efficiency may not be necessary for wastewater treatment, as it consumes less energy at the lower value.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioelechem.2019.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioelechem.2019.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu