- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOCountry
Source
Organization
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, SpainPublisher:Wiley Funded by:EC | REFORESTEC| REFORESTAndrea Hevia; Daniel Ziche; Arthur Gessler; Arthur Gessler; J. Julio Camarero; Raúl Sánchez-Salguero; Matthias Saurer; Andreas Bolte; Alessandra Bottero; Jordi Martínez-Vilalta; Luis Matías; Mathieu Lévesque; Annette Menzel; Andreas Rigling; Andreas Rigling; Matthias Haeni; Juan Carlos Linares; Maxime Cailleret; Ana-Maria Hereş; Ana-Maria Hereş; Allan Buras; Michel Vennetier; Arun K. Bose; Arun K. Bose;AbstractGlobal climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.
Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2020License: CC BY NC NDHyper Article en LigneArticle . 2020License: CC BY NDFull-Text: https://hal.inrae.fr/hal-03102762/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/95074Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2020License: CC BY NC NDHyper Article en LigneArticle . 2020License: CC BY NDFull-Text: https://hal.inrae.fr/hal-03102762/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/95074Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Funded by:SNSF | The effects of drought on...SNSF| The effects of drought on the interaction between carbon and nitrogen relations in treesArthur Gessler; Max Ryan; Isaac Borrego; Isaac Borrego; Lee T. Dickman; Charlotte Grossiord; Nate G. McDowell; Leonie Schönbeck; Alberto Vilagrosa; Sasha C. Reed; Sanna Sevanto; Adam D. Collins;doi: 10.1111/pce.13389
pmid: 29974965
AbstractClimate warming should result in hotter droughts of unprecedented severity in this century. Such droughts have been linked with massive tree mortality, and data suggest that warming interacts with drought to aggravate plant performance. Yet how forests will respond to hotter droughts remains unclear, as does the suite of mechanisms trees use to deal with hot droughts. We used an ecosystem‐scale manipulation of precipitation and temperature on piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees to investigate nitrogen (N) cycling‐induced mitigation processes related to hotter droughts. We found that while negative impacts on plant carbon and water balance are manifest after prolonged drought, performance reductions were not amplified by warmer temperatures. Rather, increased temperatures for 5 years stimulated soil N cycling under piñon trees and modified tree N allocation for both species, resulting in mitigation of hotter drought impacts on tree water and carbon functions. These findings suggest that adjustments in N cycling are likely after multi‐year warming conditions and that such changes may buffer reductions in tree performance during hotter droughts. The results highlight our incomplete understanding of trees' ability to acclimate to climate change, raising fundamental questions about the resistance potential of forests to long‐term, compound climatic stresses.
Plant Cell & Environ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2018Data sources: Repositorio Institucional de la Universidad de AlicantePlant Cell & EnvironmentArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2018Data sources: Repositorio Institucional de la Universidad de AlicantePlant Cell & EnvironmentArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Constantin M. Zohner; Yann Vitasse; Arthur Gessler; Arthur Gessler; Frederik Baumgarten;doi: 10.1111/nph.17270
pmid: 33577087
Summary Over the last decades, spring leaf‐out of temperate and boreal trees has substantially advanced in response to global warming, affecting terrestrial biogeochemical fluxes and the Earth's climate system. However, it remains unclear whether leaf‐out will continue to advance with further warming because species’ effective chilling temperatures, as well as the amount of chilling time required to break dormancy, are still largely unknown for most forest tree species. Here, we assessed the progress of winter dormancy and quantified the efficiency of different chilling temperatures in six dominant temperate European tree species by exposing 1170 twig cuttings to a range of temperatures from −2°C to 10°C for 1, 3, 6 or 12 wk. We found that freezing temperatures were most effective for half of the species or as effective as chilling temperatures up to 10°C, that is, leading to minimum thermal time to and maximum success of budburst. Interestingly, chilling duration had a much larger effect on dormancy release than absolute chilling temperature. Our experimental results challenge the common assumption that optimal chilling temperatures range c. 4–6°C, instead revealing strong sensitivity to a large range of temperatures. These findings are valuable for improving phenological models and predicting future spring phenology in a warming world.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:[no funder available]Katja Felsmann; Mathias Baudis; Zachary E. Kayler; Heike Puhlmann; Andreas Ulrich; Arthur Gessler;Abstract Key message Understory plant communities are essential for the recruitment of trees making up future forests. Independent of plant diversity, the understory across different forest ecosystems shows considerable physiological acclimation and structural stability towards drought events, which are expected to occur more frequently in future. Context Understory plant communities are essential for the recruitment of trees making up the future forest. It is so far poorly understood how climate change will affect understory in beech and conifer forests managed at different intensity levels. Aims We hypothesized that drought would affect transpiration and carbon isotope discrimination but not species richness and diversity. Moreover, we assumed that forest management intensity will modify the responses to drought of the understory community. Methods We set up roofs in forests with a gradient of management intensities (unmanaged beech—managed beech—intensively managed conifer forests) in three regions across Germany. A drought event close to the 2003 drought was imposed in two consecutive years. Results After 2 years, the realized precipitation reduction was between 27% and 34%. The averaged water content in the top 20 cm of the soil under the roof was reduced by 2% to 8% compared with the control. In the 1st year, leaf level transpiration was reduced for different functional groups, which scaled to community transpiration modified by additional effects of drought on functional group leaf area. Acclimation effects in most functional groups were observed in the 2nd year. Conclusion Forest understory shows high plasticity at the leaf and community level, and high structural stability to changing climate conditions with drought events.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13595-017-0681-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13595-017-0681-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2020Embargo end date: 01 Jan 2022 Switzerland, GermanyPublisher:Wiley Funded by:[no funder available]Matthias Saurer; Tobias Gebauer; Charles A. Nock; Charles A. Nock; Peter Hajek; Christian Messier; Christian Messier; Alain Paquette; Bernhard Schuldt; Arthur Gessler; Arthur Gessler; Michael Scherer-Lorenzen; Roman M. Link; Laura Rose; Jürgen Bauhus; Kyle R. Kovach;AbstractUnprecedented tree dieback across Central Europe caused by recent global change‐type drought events highlights the need for a better mechanistic understanding of drought‐induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change‐type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non‐structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species‐specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought‐induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought‐induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:Wiley Funded by:EC | REFORESTEC| REFORESTMartina Peter; Andreas Rigling; Andreas Rigling; Christian Rellstab; Barbara Moser; Thomas Wohlgemuth; Marco M. Lehmann; Arthur Gessler; Arthur Gessler; Arun K. Bose; Arun K. Bose; Alexandru Milcu;AbstractLong generation times have been suggested to hamper rapid genetic adaptation of organisms to changing environmental conditions. We examined if environmental memory of the parental Scots pines (Pinus sylvestris L.) drive offspring survival and growth. We used seeds from trees growing under naturally dry conditions (control), irrigated trees (irrigated from 2003 to 2016), and formerly irrigated trees (“irrigation stop”; irrigated from 2003–2013; control condition since 2014). We performed two experiments, one under controlled greenhouse conditions and one at the experimental field site. In the greenhouse, the offspring from control trees exposed regularly to drought were more tolerant to hot–drought conditions than the offspring from irrigated trees and showed lower mortality even though there was no genetic difference. However, under optimal conditions (high water supply and full sunlight), these offspring showed lower growth and were outperformed by the offspring of the irrigated trees. This different offspring growth, with the offspring of the “irrigation‐stop” trees showing intermediate responses, points to the important role of transgenerational memory for the long‐term acclimation of trees. Such memory effects, however, may be overridden by climatic extremes during germination and early growth stages such as the European 2018 mega‐drought that impacted our field experiment.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:SNSF | Acclimation and environme..., SNSF | The effects of drought on...SNSF| Acclimation and environmental memory - how do trees adjust to warmer droughts on different time scales and where are the limits? ,SNSF| The effects of drought on the interaction between carbon and nitrogen relations in treesJobin Joseph; Matthias Saurer; Nadine K. Ruehr; Mai-He Li; Mai-He Li; Matthias Haeni; Andreas Rigling; Andreas Rigling; Roland A. Werner; Marco M. Lehmann; Arthur Gessler; Arthur Gessler; Marcus Schaub; Ivano Brunner; Frank M. Thomas; Jörg Luster; Gerd Gleixner; Leonie Schönbeck; Frank Hagedorn; Willy Werner; Henrik Hartmann; Martina Peter; Günter Hoch; Benjamin Stern; Christian Hug; Christian Poll; Bernhard Backes; Ansgar Kahmen; Kaisa Rissanen; Corinne Bloch; Decai Gao; Decai Gao; Thomas Wohlgemuth;Significance Climate change increases the frequency of drought events and leads to higher variability in precipitation. Drought impairs rhizosphere (root and the root-associated microbiome) functioning in trees and leads to a reduced assimilate supply belowground. It remains unclear if rhizosphere and thus whole-tree functioning can quickly recover after drought release. We show that rhizosphere metabolic activity in previously drought-exposed 100-y-old Scots pine increased in response to subtle soil moisture increases (induced by light rainfall). As a consequence of this activity change, the belowground allocation of new assimilates was immediately stimulated. Even light rainfall events can lead to a fast recovery of rhizosphere functioning and the increased C and energy demand is instantly met by altered whole-tree assimilate allocation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2014084117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2014084117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Denmark, FinlandPublisher:Elsevier BV Publicly fundedSophia Etzold; Päivi Merilä; Anne Thimonier; Sue Benham; Marco Ferretti; Marcus Schaub; Tanja G. M. Sanders; Miklos Manninger; Morten Ingerslev; Aldo Marchetto; Arthur Gessler; Mathieu Jonard; Monika Vejpustkova; Peter Waldner; Walter Seidling; Antti Jussi Lindroos; David Simpson; David Simpson; Svein Solberg; Mitja Skudnik; Pekka Nöjd; Per Erik Karlsson; Pasi Rautio; Wim de Vries; Lars Vesterdal; Arne Verstraeten; G.J. Reinds; Karin Hansen; Henning Meesenburg;Changing environmental conditions may substantially interact with site quality and forest stand characteristics, and impact forest growth and carbon sequestration. Understanding the impact of the various drivers of forest growth is therefore critical to predict how forest ecosystems can respond to climate change. We conducted a continental-scale analysis of recent (1995–2010) forest volume increment data (ΔVol, m3 ha−1 yr−1), obtained from ca. 100,000 coniferous and broadleaved trees in 442 even-aged, single-species stands across 23 European countries. We used multivariate statistical approaches, such as mixed effects models and structural equation modelling to investigate how European forest growth respond to changes in 11 predictors, including stand characteristics, climate conditions, air and site quality, as well as their interactions. We found that, despite the large environmental gradients encompassed by the forests examined, stand density and age were key drivers of forest growth. We further detected a positive, in some cases non-linear effect of N deposition, most pronounced for beech forests, with a tipping point at ca. 30 kg N ha−1 yr−1. With the exception of a consistent temperature signal on Norway spruce, climate-related predictors and ground-level ozone showed much less generalized relationships with ΔVol. Our results show that, together with the driving forces exerted by stand density and age, N deposition is at least as important as climate to modulate forest growth at continental scale in Europe, with a potential negative effect at sites with high N deposition.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Yann Vitasse; Alessandra Bottero; Maxime Cailleret; Christof Bigler; Patrick Fonti; Arthur Gessler; Mathieu Lévesque; Brigitte Rohner; Pascale Weber; Andreas Rigling; Thomas Wohlgemuth;doi: 10.1111/gcb.14803
pmid: 31436853
AbstractExtreme climate events (ECEs) such as severe droughts, heat waves, and late spring frosts are rare but exert a paramount role in shaping tree species distributions. The frequency of such ECEs is expected to increase with climate warming, threatening the sustainability of temperate forests. Here, we analyzed 2,844 tree‐ring width series of five dominant European tree species from 104 Swiss sites ranging from 400 to 2,200 m a.s.l. for the period 1930–2016. We found that (a) the broadleaved oak and beech are sensitive to late frosts that strongly reduce current year growth; however, tree growth is highly resilient and fully recovers within 2 years; (b) radial growth of the conifers larch and spruce is strongly and enduringly reduced by spring droughts—these species are the least resistant and resilient to droughts; (c) oak, silver fir, and to a lower extent beech, show higher resistance and resilience to spring droughts and seem therefore better adapted to the future climate. Our results allow a robust comparison of the tree growth responses to drought and spring frost across large climatic gradients and provide striking evidence that the growth of some of the most abundant and economically important European tree species will be increasingly limited by climate warming. These results could serve for supporting species selection to maintain the sustainability of forest ecosystem services under the expected increase in ECEs.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019Full-Text: https://hal.inrae.fr/hal-02523161/documentData sources: Hyper Article en LigneGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 174 citations 174 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019Full-Text: https://hal.inrae.fr/hal-02523161/documentData sources: Hyper Article en LigneGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, Germany, France, Denmark, FinlandPublisher:Proceedings of the National Academy of Sciences Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPECharlotte Grossiord; André Granier; Sophia Ratcliffe; Olivier Bouriaud; Helge Bruelheide; Ewa Chećko; David Ian Forrester; Seid Muhie Dawud; Leena Finér; Martina Pollastrini; Michael Scherer-Lorenzen; Fernando Valladares; Damien Bonal; Arthur Gessler;Significance In the context of climate change, expected drier and warmer environmental conditions will have drastic consequences on forest functions and services and may bring about important drought-induced die-off events. Biodiversity promotes forest ecosystem performance and resistance to insect pests and diseases, but whether or not diverse forests are also better adapted to deal with drought stress remains unknown. Within our study network of 160 forest stands across Europe, we found that mixed species forests are less exposed to drought stress in some regions only. Therefore, managing forest ecosystems for high tree species diversity does not necessarily assure improved resistance to the more severe and frequent drought events predicted for the future.
Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1411970111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 237 citations 237 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 10visibility views 10 download downloads 18 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1411970111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, SpainPublisher:Wiley Funded by:EC | REFORESTEC| REFORESTAndrea Hevia; Daniel Ziche; Arthur Gessler; Arthur Gessler; J. Julio Camarero; Raúl Sánchez-Salguero; Matthias Saurer; Andreas Bolte; Alessandra Bottero; Jordi Martínez-Vilalta; Luis Matías; Mathieu Lévesque; Annette Menzel; Andreas Rigling; Andreas Rigling; Matthias Haeni; Juan Carlos Linares; Maxime Cailleret; Ana-Maria Hereş; Ana-Maria Hereş; Allan Buras; Michel Vennetier; Arun K. Bose; Arun K. Bose;AbstractGlobal climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.
Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2020License: CC BY NC NDHyper Article en LigneArticle . 2020License: CC BY NDFull-Text: https://hal.inrae.fr/hal-03102762/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/95074Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Arias Montano, Repos... arrow_drop_down Arias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2020License: CC BY NC NDHyper Article en LigneArticle . 2020License: CC BY NDFull-Text: https://hal.inrae.fr/hal-03102762/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/95074Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BY NC NDData sources: Diposit Digital de Documents de la UABidUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Funded by:SNSF | The effects of drought on...SNSF| The effects of drought on the interaction between carbon and nitrogen relations in treesArthur Gessler; Max Ryan; Isaac Borrego; Isaac Borrego; Lee T. Dickman; Charlotte Grossiord; Nate G. McDowell; Leonie Schönbeck; Alberto Vilagrosa; Sasha C. Reed; Sanna Sevanto; Adam D. Collins;doi: 10.1111/pce.13389
pmid: 29974965
AbstractClimate warming should result in hotter droughts of unprecedented severity in this century. Such droughts have been linked with massive tree mortality, and data suggest that warming interacts with drought to aggravate plant performance. Yet how forests will respond to hotter droughts remains unclear, as does the suite of mechanisms trees use to deal with hot droughts. We used an ecosystem‐scale manipulation of precipitation and temperature on piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees to investigate nitrogen (N) cycling‐induced mitigation processes related to hotter droughts. We found that while negative impacts on plant carbon and water balance are manifest after prolonged drought, performance reductions were not amplified by warmer temperatures. Rather, increased temperatures for 5 years stimulated soil N cycling under piñon trees and modified tree N allocation for both species, resulting in mitigation of hotter drought impacts on tree water and carbon functions. These findings suggest that adjustments in N cycling are likely after multi‐year warming conditions and that such changes may buffer reductions in tree performance during hotter droughts. The results highlight our incomplete understanding of trees' ability to acclimate to climate change, raising fundamental questions about the resistance potential of forests to long‐term, compound climatic stresses.
Plant Cell & Environ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2018Data sources: Repositorio Institucional de la Universidad de AlicantePlant Cell & EnvironmentArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2018Data sources: Repositorio Institucional de la Universidad de AlicantePlant Cell & EnvironmentArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Constantin M. Zohner; Yann Vitasse; Arthur Gessler; Arthur Gessler; Frederik Baumgarten;doi: 10.1111/nph.17270
pmid: 33577087
Summary Over the last decades, spring leaf‐out of temperate and boreal trees has substantially advanced in response to global warming, affecting terrestrial biogeochemical fluxes and the Earth's climate system. However, it remains unclear whether leaf‐out will continue to advance with further warming because species’ effective chilling temperatures, as well as the amount of chilling time required to break dormancy, are still largely unknown for most forest tree species. Here, we assessed the progress of winter dormancy and quantified the efficiency of different chilling temperatures in six dominant temperate European tree species by exposing 1170 twig cuttings to a range of temperatures from −2°C to 10°C for 1, 3, 6 or 12 wk. We found that freezing temperatures were most effective for half of the species or as effective as chilling temperatures up to 10°C, that is, leading to minimum thermal time to and maximum success of budburst. Interestingly, chilling duration had a much larger effect on dormancy release than absolute chilling temperature. Our experimental results challenge the common assumption that optimal chilling temperatures range c. 4–6°C, instead revealing strong sensitivity to a large range of temperatures. These findings are valuable for improving phenological models and predicting future spring phenology in a warming world.
New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:[no funder available]Katja Felsmann; Mathias Baudis; Zachary E. Kayler; Heike Puhlmann; Andreas Ulrich; Arthur Gessler;Abstract Key message Understory plant communities are essential for the recruitment of trees making up future forests. Independent of plant diversity, the understory across different forest ecosystems shows considerable physiological acclimation and structural stability towards drought events, which are expected to occur more frequently in future. Context Understory plant communities are essential for the recruitment of trees making up the future forest. It is so far poorly understood how climate change will affect understory in beech and conifer forests managed at different intensity levels. Aims We hypothesized that drought would affect transpiration and carbon isotope discrimination but not species richness and diversity. Moreover, we assumed that forest management intensity will modify the responses to drought of the understory community. Methods We set up roofs in forests with a gradient of management intensities (unmanaged beech—managed beech—intensively managed conifer forests) in three regions across Germany. A drought event close to the 2003 drought was imposed in two consecutive years. Results After 2 years, the realized precipitation reduction was between 27% and 34%. The averaged water content in the top 20 cm of the soil under the roof was reduced by 2% to 8% compared with the control. In the 1st year, leaf level transpiration was reduced for different functional groups, which scaled to community transpiration modified by additional effects of drought on functional group leaf area. Acclimation effects in most functional groups were observed in the 2nd year. Conclusion Forest understory shows high plasticity at the leaf and community level, and high structural stability to changing climate conditions with drought events.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13595-017-0681-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13595-017-0681-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2020Embargo end date: 01 Jan 2022 Switzerland, GermanyPublisher:Wiley Funded by:[no funder available]Matthias Saurer; Tobias Gebauer; Charles A. Nock; Charles A. Nock; Peter Hajek; Christian Messier; Christian Messier; Alain Paquette; Bernhard Schuldt; Arthur Gessler; Arthur Gessler; Michael Scherer-Lorenzen; Roman M. Link; Laura Rose; Jürgen Bauhus; Kyle R. Kovach;AbstractUnprecedented tree dieback across Central Europe caused by recent global change‐type drought events highlights the need for a better mechanistic understanding of drought‐induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change‐type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non‐structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species‐specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought‐induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought‐induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226269Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:Wiley Funded by:EC | REFORESTEC| REFORESTMartina Peter; Andreas Rigling; Andreas Rigling; Christian Rellstab; Barbara Moser; Thomas Wohlgemuth; Marco M. Lehmann; Arthur Gessler; Arthur Gessler; Arun K. Bose; Arun K. Bose; Alexandru Milcu;AbstractLong generation times have been suggested to hamper rapid genetic adaptation of organisms to changing environmental conditions. We examined if environmental memory of the parental Scots pines (Pinus sylvestris L.) drive offspring survival and growth. We used seeds from trees growing under naturally dry conditions (control), irrigated trees (irrigated from 2003 to 2016), and formerly irrigated trees (“irrigation stop”; irrigated from 2003–2013; control condition since 2014). We performed two experiments, one under controlled greenhouse conditions and one at the experimental field site. In the greenhouse, the offspring from control trees exposed regularly to drought were more tolerant to hot–drought conditions than the offspring from irrigated trees and showed lower mortality even though there was no genetic difference. However, under optimal conditions (high water supply and full sunlight), these offspring showed lower growth and were outperformed by the offspring of the irrigated trees. This different offspring growth, with the offspring of the “irrigation‐stop” trees showing intermediate responses, points to the important role of transgenerational memory for the long‐term acclimation of trees. Such memory effects, however, may be overridden by climatic extremes during germination and early growth stages such as the European 2018 mega‐drought that impacted our field experiment.
Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plant Cell & Environ... arrow_drop_down Plant Cell & EnvironmentArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.13729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, GermanyPublisher:Proceedings of the National Academy of Sciences Funded by:SNSF | Acclimation and environme..., SNSF | The effects of drought on...SNSF| Acclimation and environmental memory - how do trees adjust to warmer droughts on different time scales and where are the limits? ,SNSF| The effects of drought on the interaction between carbon and nitrogen relations in treesJobin Joseph; Matthias Saurer; Nadine K. Ruehr; Mai-He Li; Mai-He Li; Matthias Haeni; Andreas Rigling; Andreas Rigling; Roland A. Werner; Marco M. Lehmann; Arthur Gessler; Arthur Gessler; Marcus Schaub; Ivano Brunner; Frank M. Thomas; Jörg Luster; Gerd Gleixner; Leonie Schönbeck; Frank Hagedorn; Willy Werner; Henrik Hartmann; Martina Peter; Günter Hoch; Benjamin Stern; Christian Hug; Christian Poll; Bernhard Backes; Ansgar Kahmen; Kaisa Rissanen; Corinne Bloch; Decai Gao; Decai Gao; Thomas Wohlgemuth;Significance Climate change increases the frequency of drought events and leads to higher variability in precipitation. Drought impairs rhizosphere (root and the root-associated microbiome) functioning in trees and leads to a reduced assimilate supply belowground. It remains unclear if rhizosphere and thus whole-tree functioning can quickly recover after drought release. We show that rhizosphere metabolic activity in previously drought-exposed 100-y-old Scots pine increased in response to subtle soil moisture increases (induced by light rainfall). As a consequence of this activity change, the belowground allocation of new assimilates was immediately stimulated. Even light rainfall events can lead to a fast recovery of rhizosphere functioning and the increased C and energy demand is instantly met by altered whole-tree assimilate allocation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2014084117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2014084117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, Denmark, FinlandPublisher:Elsevier BV Publicly fundedSophia Etzold; Päivi Merilä; Anne Thimonier; Sue Benham; Marco Ferretti; Marcus Schaub; Tanja G. M. Sanders; Miklos Manninger; Morten Ingerslev; Aldo Marchetto; Arthur Gessler; Mathieu Jonard; Monika Vejpustkova; Peter Waldner; Walter Seidling; Antti Jussi Lindroos; David Simpson; David Simpson; Svein Solberg; Mitja Skudnik; Pekka Nöjd; Per Erik Karlsson; Pasi Rautio; Wim de Vries; Lars Vesterdal; Arne Verstraeten; G.J. Reinds; Karin Hansen; Henning Meesenburg;Changing environmental conditions may substantially interact with site quality and forest stand characteristics, and impact forest growth and carbon sequestration. Understanding the impact of the various drivers of forest growth is therefore critical to predict how forest ecosystems can respond to climate change. We conducted a continental-scale analysis of recent (1995–2010) forest volume increment data (ΔVol, m3 ha−1 yr−1), obtained from ca. 100,000 coniferous and broadleaved trees in 442 even-aged, single-species stands across 23 European countries. We used multivariate statistical approaches, such as mixed effects models and structural equation modelling to investigate how European forest growth respond to changes in 11 predictors, including stand characteristics, climate conditions, air and site quality, as well as their interactions. We found that, despite the large environmental gradients encompassed by the forests examined, stand density and age were key drivers of forest growth. We further detected a positive, in some cases non-linear effect of N deposition, most pronounced for beech forests, with a tipping point at ca. 30 kg N ha−1 yr−1. With the exception of a consistent temperature signal on Norway spruce, climate-related predictors and ground-level ozone showed much less generalized relationships with ΔVol. Our results show that, together with the driving forces exerted by stand density and age, N deposition is at least as important as climate to modulate forest growth at continental scale in Europe, with a potential negative effect at sites with high N deposition.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Forest Ecology and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Yann Vitasse; Alessandra Bottero; Maxime Cailleret; Christof Bigler; Patrick Fonti; Arthur Gessler; Mathieu Lévesque; Brigitte Rohner; Pascale Weber; Andreas Rigling; Thomas Wohlgemuth;doi: 10.1111/gcb.14803
pmid: 31436853
AbstractExtreme climate events (ECEs) such as severe droughts, heat waves, and late spring frosts are rare but exert a paramount role in shaping tree species distributions. The frequency of such ECEs is expected to increase with climate warming, threatening the sustainability of temperate forests. Here, we analyzed 2,844 tree‐ring width series of five dominant European tree species from 104 Swiss sites ranging from 400 to 2,200 m a.s.l. for the period 1930–2016. We found that (a) the broadleaved oak and beech are sensitive to late frosts that strongly reduce current year growth; however, tree growth is highly resilient and fully recovers within 2 years; (b) radial growth of the conifers larch and spruce is strongly and enduringly reduced by spring droughts—these species are the least resistant and resilient to droughts; (c) oak, silver fir, and to a lower extent beech, show higher resistance and resilience to spring droughts and seem therefore better adapted to the future climate. Our results allow a robust comparison of the tree growth responses to drought and spring frost across large climatic gradients and provide striking evidence that the growth of some of the most abundant and economically important European tree species will be increasingly limited by climate warming. These results could serve for supporting species selection to maintain the sustainability of forest ecosystem services under the expected increase in ECEs.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019Full-Text: https://hal.inrae.fr/hal-02523161/documentData sources: Hyper Article en LigneGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 174 citations 174 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019Full-Text: https://hal.inrae.fr/hal-02523161/documentData sources: Hyper Article en LigneGlobal Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, Germany, France, Denmark, FinlandPublisher:Proceedings of the National Academy of Sciences Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPECharlotte Grossiord; André Granier; Sophia Ratcliffe; Olivier Bouriaud; Helge Bruelheide; Ewa Chećko; David Ian Forrester; Seid Muhie Dawud; Leena Finér; Martina Pollastrini; Michael Scherer-Lorenzen; Fernando Valladares; Damien Bonal; Arthur Gessler;Significance In the context of climate change, expected drier and warmer environmental conditions will have drastic consequences on forest functions and services and may bring about important drought-induced die-off events. Biodiversity promotes forest ecosystem performance and resistance to insect pests and diseases, but whether or not diverse forests are also better adapted to deal with drought stress remains unknown. Within our study network of 160 forest stands across Europe, we found that mixed species forests are less exposed to drought stress in some regions only. Therefore, managing forest ecosystems for high tree species diversity does not necessarily assure improved resistance to the more severe and frequent drought events predicted for the future.
Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1411970111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 237 citations 237 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 10visibility views 10 download downloads 18 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1411970111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu