- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:UKRI | Transient tracer-based In..., ARC | Discovery Projects - Gran..., UKRI | Addressing the Grand Chal... +3 projectsUKRI| Transient tracer-based Investigation of Circulation and Thermal Ocean Change (TICTOC) ,ARC| Discovery Projects - Grant ID: DP160103130 ,UKRI| Addressing the Grand Challenge of regional sea level change prediction ,[no funder available] ,DFG| Regional Sea Level Change and Society (SeaLevel) ,ARC| Future Fellowships - Grant ID: FT130101532Oleg A. Saenko; Laure Zanna; Laure Zanna; Matthew P. Couldrey; Tatsuo Suzuki; Simon J. Marsland; Simon J. Marsland; Oluwayemi A. Garuba; Masayoshi Ishii; Jonathan M. Gregory; Jonathan M. Gregory; Johann H. Jungclaus; Andrew Shao; Fabio Boeira Dias; A. Todd; Abhishek Savita; Abhishek Savita; Detlef Stammer; Sayantani Ojha; Peter Dobrohotoff; Peter Dobrohotoff; Armin Köhl; Aixue Hu; Helmuth Haak; Catia M. Domingues; Catia M. Domingues; Stephen M. Griffies; Stephen M. Griffies;AbstractSea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYFull-Text: https://nora.nerc.ac.uk/id/eprint/528909/1/Couldrey2020_Article_WhatCausesTheSpreadOfModelProj.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-020-05471-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 27visibility views 27 download downloads 9 Powered bymore_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYFull-Text: https://nora.nerc.ac.uk/id/eprint/528909/1/Couldrey2020_Article_WhatCausesTheSpreadOfModelProj.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-020-05471-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, Australia, United KingdomPublisher:American Meteorological Society Funded by:AKA | The impact of Antarctic I..., UKRI | Transient tracer-based In...AKA| The impact of Antarctic Ice Sheet - Southern Ocean interactions on marine ice sheet stability and ocean circulation/ Consortium: COLD ,UKRI| Transient tracer-based Investigation of Circulation and Thermal Ocean Change (TICTOC)Mauricio M. Mata; A. Savita; A. Savita; A. Savita; Elaine L. McDonagh; Fabio Boeira Dias; Louis Clement; Catia M. Domingues; Catia M. Domingues; Russell Fiedler; Steve Rintoul; Simon J. Marsland; Simon J. Marsland; Simon J. Marsland;AbstractOcean heat storage due to local addition of heat (“added”) and due to changes in heat transport (“redistributed”) were quantified in ocean-only 2xCO2 simulations. While added heat storage dominates globally, redistribution makes important regional contributions, especially in the tropics. Heat redistribution is dominated by circulation changes, summarized by the super-residual transport, with only minor effects from changes in vertical mixing. While previous studies emphasized the contribution of redistribution feedback at high latitudes, this study shows that redistribution of heat also accounts for 65% of heat storage at low latitudes and 25% in the midlatitude (35°–50°S) Southern Ocean. Tropical warming results from the interplay between increased stratification and equatorward heat transport by the subtropical gyres, which redistributes heat from the subtropics to lower latitudes. The Atlantic pattern is remarkably distinct from other basins, resulting in larger basin-average heat storage. Added heat storage is evenly distributed throughout midlatitude Southern Ocean and dominates the total storage. However, redistribution stores heat north of the Antarctic Circumpolar Current in the Atlantic and Indian sectors, having an important contribution to the peak of heat storage at 45°S. Southern Ocean redistribution results from intensified heat convergence in the subtropical front and reduced stratification in response to surface heat, freshwater, and momentum flux perturbations. These results highlight that the distribution of ocean heat storage reflects both passive uptake of heat and active redistribution of heat by changes in ocean circulation processes. The redistributed heat transport must therefore be better understood for accurate projection of changes in ocean heat uptake efficiency, ocean heat storage, and thermosteric sea level.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-1016.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-1016.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 AustraliaPublisher:CSIRO Publishing Chloe Mackallah; Simon J. Marsland; Simon J. Marsland; Fabio Boeira Dias; Fabio Boeira Dias; Hailin Yan; Peter Dobrohotoff; Matthew T. Woodhouse; Anthony C. Hirst; Arnold Sullivan; Abhishek Savita; Abhishek Savita; Harun Rashid; Jhan Srbinovsky; Daohua Bi; Aidan Heerdegen; Rachel M. Law; Russell Fiedler; Martin Dix; Ian N. Harman; Siobhan O'Farrell; Roger Bodman;doi: 10.1071/es19040
A new version of the Australian Community Climate and Earth System Simulator coupled model, ACCESS-CM2, has been developed for a wide range of climate modelling research and applications. In particular, ACCESS-CM2 is one of Australia’s contributions to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6). Compared with the ACCESS1.3 model used for our CMIP5 submission, all model components have been upgraded as well as the coupling framework (OASIS3-MCT) and experiment control system (Rose/Cylc). The component models are: UM10.6 GA7.1 for the atmosphere, CABLE2.5 for the land surface, MOM5 for the ocean, and CICE5.1.2 for the sea ice. This paper describes the model configuration of ACCESS-CM2, documents the experimental set up, and assesses the model performance for the preindustrial spin-up simulation in comparison against (reconstructed) observations and ACCESS1.3 results. While the performance of the two generations of the ACCESS coupled model is largely comparable, ACCESS-CM2 shows better global hydrological balance, more realistic ocean water properties (in terms of spatial distribution) and meridional overturning circulation in the Southern Ocean but a poorer simulation of the Antarctic sea ice and a larger energy imbalance at the top of atmosphere. This energy imbalance reflects a noticeable warming trend of the global ocean over the spin-up period.
Journal of Southern ... arrow_drop_down Journal of Southern Hemisphere Earth Systems ScienceArticle . 2020 . Peer-reviewedData sources: CrossrefJournal of Southern Hemisphere Earth Systems ScienceArticleLicense: CC BY NC NDData sources: UnpayWallUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/es19040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Southern ... arrow_drop_down Journal of Southern Hemisphere Earth Systems ScienceArticle . 2020 . Peer-reviewedData sources: CrossrefJournal of Southern Hemisphere Earth Systems ScienceArticleLicense: CC BY NC NDData sources: UnpayWallUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/es19040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:UKRI | Transient tracer-based In..., ARC | Discovery Projects - Gran..., UKRI | Addressing the Grand Chal... +3 projectsUKRI| Transient tracer-based Investigation of Circulation and Thermal Ocean Change (TICTOC) ,ARC| Discovery Projects - Grant ID: DP160103130 ,UKRI| Addressing the Grand Challenge of regional sea level change prediction ,[no funder available] ,DFG| Regional Sea Level Change and Society (SeaLevel) ,ARC| Future Fellowships - Grant ID: FT130101532Oleg A. Saenko; Laure Zanna; Laure Zanna; Matthew P. Couldrey; Tatsuo Suzuki; Simon J. Marsland; Simon J. Marsland; Oluwayemi A. Garuba; Masayoshi Ishii; Jonathan M. Gregory; Jonathan M. Gregory; Johann H. Jungclaus; Andrew Shao; Fabio Boeira Dias; A. Todd; Abhishek Savita; Abhishek Savita; Detlef Stammer; Sayantani Ojha; Peter Dobrohotoff; Peter Dobrohotoff; Armin Köhl; Aixue Hu; Helmuth Haak; Catia M. Domingues; Catia M. Domingues; Stephen M. Griffies; Stephen M. Griffies;AbstractSea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYFull-Text: https://nora.nerc.ac.uk/id/eprint/528909/1/Couldrey2020_Article_WhatCausesTheSpreadOfModelProj.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-020-05471-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 27visibility views 27 download downloads 9 Powered bymore_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYFull-Text: https://nora.nerc.ac.uk/id/eprint/528909/1/Couldrey2020_Article_WhatCausesTheSpreadOfModelProj.pdfData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-020-05471-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, Australia, United KingdomPublisher:American Meteorological Society Funded by:AKA | The impact of Antarctic I..., UKRI | Transient tracer-based In...AKA| The impact of Antarctic Ice Sheet - Southern Ocean interactions on marine ice sheet stability and ocean circulation/ Consortium: COLD ,UKRI| Transient tracer-based Investigation of Circulation and Thermal Ocean Change (TICTOC)Mauricio M. Mata; A. Savita; A. Savita; A. Savita; Elaine L. McDonagh; Fabio Boeira Dias; Louis Clement; Catia M. Domingues; Catia M. Domingues; Russell Fiedler; Steve Rintoul; Simon J. Marsland; Simon J. Marsland; Simon J. Marsland;AbstractOcean heat storage due to local addition of heat (“added”) and due to changes in heat transport (“redistributed”) were quantified in ocean-only 2xCO2 simulations. While added heat storage dominates globally, redistribution makes important regional contributions, especially in the tropics. Heat redistribution is dominated by circulation changes, summarized by the super-residual transport, with only minor effects from changes in vertical mixing. While previous studies emphasized the contribution of redistribution feedback at high latitudes, this study shows that redistribution of heat also accounts for 65% of heat storage at low latitudes and 25% in the midlatitude (35°–50°S) Southern Ocean. Tropical warming results from the interplay between increased stratification and equatorward heat transport by the subtropical gyres, which redistributes heat from the subtropics to lower latitudes. The Atlantic pattern is remarkably distinct from other basins, resulting in larger basin-average heat storage. Added heat storage is evenly distributed throughout midlatitude Southern Ocean and dominates the total storage. However, redistribution stores heat north of the Antarctic Circumpolar Current in the Atlantic and Indian sectors, having an important contribution to the peak of heat storage at 45°S. Southern Ocean redistribution results from intensified heat convergence in the subtropical front and reduced stratification in response to surface heat, freshwater, and momentum flux perturbations. These results highlight that the distribution of ocean heat storage reflects both passive uptake of heat and active redistribution of heat by changes in ocean circulation processes. The redistributed heat transport must therefore be better understood for accurate projection of changes in ocean heat uptake efficiency, ocean heat storage, and thermosteric sea level.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-1016.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-1016.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 AustraliaPublisher:CSIRO Publishing Chloe Mackallah; Simon J. Marsland; Simon J. Marsland; Fabio Boeira Dias; Fabio Boeira Dias; Hailin Yan; Peter Dobrohotoff; Matthew T. Woodhouse; Anthony C. Hirst; Arnold Sullivan; Abhishek Savita; Abhishek Savita; Harun Rashid; Jhan Srbinovsky; Daohua Bi; Aidan Heerdegen; Rachel M. Law; Russell Fiedler; Martin Dix; Ian N. Harman; Siobhan O'Farrell; Roger Bodman;doi: 10.1071/es19040
A new version of the Australian Community Climate and Earth System Simulator coupled model, ACCESS-CM2, has been developed for a wide range of climate modelling research and applications. In particular, ACCESS-CM2 is one of Australia’s contributions to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6). Compared with the ACCESS1.3 model used for our CMIP5 submission, all model components have been upgraded as well as the coupling framework (OASIS3-MCT) and experiment control system (Rose/Cylc). The component models are: UM10.6 GA7.1 for the atmosphere, CABLE2.5 for the land surface, MOM5 for the ocean, and CICE5.1.2 for the sea ice. This paper describes the model configuration of ACCESS-CM2, documents the experimental set up, and assesses the model performance for the preindustrial spin-up simulation in comparison against (reconstructed) observations and ACCESS1.3 results. While the performance of the two generations of the ACCESS coupled model is largely comparable, ACCESS-CM2 shows better global hydrological balance, more realistic ocean water properties (in terms of spatial distribution) and meridional overturning circulation in the Southern Ocean but a poorer simulation of the Antarctic sea ice and a larger energy imbalance at the top of atmosphere. This energy imbalance reflects a noticeable warming trend of the global ocean over the spin-up period.
Journal of Southern ... arrow_drop_down Journal of Southern Hemisphere Earth Systems ScienceArticle . 2020 . Peer-reviewedData sources: CrossrefJournal of Southern Hemisphere Earth Systems ScienceArticleLicense: CC BY NC NDData sources: UnpayWallUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/es19040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Southern ... arrow_drop_down Journal of Southern Hemisphere Earth Systems ScienceArticle . 2020 . Peer-reviewedData sources: CrossrefJournal of Southern Hemisphere Earth Systems ScienceArticleLicense: CC BY NC NDData sources: UnpayWallUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/es19040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu