- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Funded by:FCT | BIOCO2, UKRI | A coordinated strategy to...FCT| BIOCO2 ,UKRI| A coordinated strategy to scale-up advanced therapies for patient in ManchesterAuthors: Viviana Scognamiglio; Maria Teresa Giardi; Daniele Zappi; Eleftherios Touloupakis; +1 AuthorsViviana Scognamiglio; Maria Teresa Giardi; Daniele Zappi; Eleftherios Touloupakis; Amina Antonacci;Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14113027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14113027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Funded by:FCT | BIOCO2, UKRI | A coordinated strategy to...FCT| BIOCO2 ,UKRI| A coordinated strategy to scale-up advanced therapies for patient in ManchesterAuthors: Viviana Scognamiglio; Maria Teresa Giardi; Daniele Zappi; Eleftherios Touloupakis; +1 AuthorsViviana Scognamiglio; Maria Teresa Giardi; Daniele Zappi; Eleftherios Touloupakis; Amina Antonacci;Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14113027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14113027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:American Chemical Society (ACS) Kuznetsova IM; Stepanenko OV; Turoverov KK; Staiano M; Scognamiglio V; Rossi M; DAuria S;In this work, the fluorescence of glutamine-binding protein (GlnBP) and its complex with glutamine (GlnBP/Gln) in native and unfolded forms was studied. The experimental data were interpreted on the basis of the results of the analysis of Trp and Tyr microenvironments taking into the account the data for GlnBP mutated forms Trp32Phe(Tyr) and Trp220Phe(Tyr), which have been obtained by Axelsen et al. (Biophys. J. 1991, 60, 650-659). This allowed us to explain the negligible contribution of Tyr residues to the bulk fluorescence of the native protein, the similarity of the fluorescence characteristics of GlnBP and GlnBP/Gln, and the uncommon effect of the excess of the fluorescence intensity at 365 nm (Trp emission) upon excitation at 297 nm respect to the excitation at 280 nm. The last effect is explained by the spectral dependence of the Trp 32 and Trp 220 contributions to the protein absorption. The protein Trp fluorescence dependence on the excitation wavelength must be taken into account for the evaluation of the Tyr residues contribution to the bulk fluorescence of protein, and in principle, it also may be used for the development of an approach for the decomposition of a multicomponent protein fluorescence spectrum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/pr0498077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/pr0498077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:American Chemical Society (ACS) Kuznetsova IM; Stepanenko OV; Turoverov KK; Staiano M; Scognamiglio V; Rossi M; DAuria S;In this work, the fluorescence of glutamine-binding protein (GlnBP) and its complex with glutamine (GlnBP/Gln) in native and unfolded forms was studied. The experimental data were interpreted on the basis of the results of the analysis of Trp and Tyr microenvironments taking into the account the data for GlnBP mutated forms Trp32Phe(Tyr) and Trp220Phe(Tyr), which have been obtained by Axelsen et al. (Biophys. J. 1991, 60, 650-659). This allowed us to explain the negligible contribution of Tyr residues to the bulk fluorescence of the native protein, the similarity of the fluorescence characteristics of GlnBP and GlnBP/Gln, and the uncommon effect of the excess of the fluorescence intensity at 365 nm (Trp emission) upon excitation at 297 nm respect to the excitation at 280 nm. The last effect is explained by the spectral dependence of the Trp 32 and Trp 220 contributions to the protein absorption. The protein Trp fluorescence dependence on the excitation wavelength must be taken into account for the evaluation of the Tyr residues contribution to the bulk fluorescence of protein, and in principle, it also may be used for the development of an approach for the decomposition of a multicomponent protein fluorescence spectrum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/pr0498077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/pr0498077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Bartolucci C; Scognamiglio V; Antonacci A; Fraceto LF;handle: 20.500.14243/445358
We describe a circular framework, divided into segments addressing specific aspects of potentially green interventions, that allows for a quick assessment of what makes nanotechnologies applied to agriculture green.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nantod.2022.101389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nantod.2022.101389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Bartolucci C; Scognamiglio V; Antonacci A; Fraceto LF;handle: 20.500.14243/445358
We describe a circular framework, divided into segments addressing specific aspects of potentially green interventions, that allows for a quick assessment of what makes nanotechnologies applied to agriculture green.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nantod.2022.101389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nantod.2022.101389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Funded by:FCT | BIOCO2, UKRI | A coordinated strategy to...FCT| BIOCO2 ,UKRI| A coordinated strategy to scale-up advanced therapies for patient in ManchesterAuthors: Viviana Scognamiglio; Maria Teresa Giardi; Daniele Zappi; Eleftherios Touloupakis; +1 AuthorsViviana Scognamiglio; Maria Teresa Giardi; Daniele Zappi; Eleftherios Touloupakis; Amina Antonacci;Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14113027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14113027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 ItalyPublisher:MDPI AG Funded by:FCT | BIOCO2, UKRI | A coordinated strategy to...FCT| BIOCO2 ,UKRI| A coordinated strategy to scale-up advanced therapies for patient in ManchesterAuthors: Viviana Scognamiglio; Maria Teresa Giardi; Daniele Zappi; Eleftherios Touloupakis; +1 AuthorsViviana Scognamiglio; Maria Teresa Giardi; Daniele Zappi; Eleftherios Touloupakis; Amina Antonacci;Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14113027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ma14113027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:American Chemical Society (ACS) Kuznetsova IM; Stepanenko OV; Turoverov KK; Staiano M; Scognamiglio V; Rossi M; DAuria S;In this work, the fluorescence of glutamine-binding protein (GlnBP) and its complex with glutamine (GlnBP/Gln) in native and unfolded forms was studied. The experimental data were interpreted on the basis of the results of the analysis of Trp and Tyr microenvironments taking into the account the data for GlnBP mutated forms Trp32Phe(Tyr) and Trp220Phe(Tyr), which have been obtained by Axelsen et al. (Biophys. J. 1991, 60, 650-659). This allowed us to explain the negligible contribution of Tyr residues to the bulk fluorescence of the native protein, the similarity of the fluorescence characteristics of GlnBP and GlnBP/Gln, and the uncommon effect of the excess of the fluorescence intensity at 365 nm (Trp emission) upon excitation at 297 nm respect to the excitation at 280 nm. The last effect is explained by the spectral dependence of the Trp 32 and Trp 220 contributions to the protein absorption. The protein Trp fluorescence dependence on the excitation wavelength must be taken into account for the evaluation of the Tyr residues contribution to the bulk fluorescence of protein, and in principle, it also may be used for the development of an approach for the decomposition of a multicomponent protein fluorescence spectrum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/pr0498077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/pr0498077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 ItalyPublisher:American Chemical Society (ACS) Kuznetsova IM; Stepanenko OV; Turoverov KK; Staiano M; Scognamiglio V; Rossi M; DAuria S;In this work, the fluorescence of glutamine-binding protein (GlnBP) and its complex with glutamine (GlnBP/Gln) in native and unfolded forms was studied. The experimental data were interpreted on the basis of the results of the analysis of Trp and Tyr microenvironments taking into the account the data for GlnBP mutated forms Trp32Phe(Tyr) and Trp220Phe(Tyr), which have been obtained by Axelsen et al. (Biophys. J. 1991, 60, 650-659). This allowed us to explain the negligible contribution of Tyr residues to the bulk fluorescence of the native protein, the similarity of the fluorescence characteristics of GlnBP and GlnBP/Gln, and the uncommon effect of the excess of the fluorescence intensity at 365 nm (Trp emission) upon excitation at 297 nm respect to the excitation at 280 nm. The last effect is explained by the spectral dependence of the Trp 32 and Trp 220 contributions to the protein absorption. The protein Trp fluorescence dependence on the excitation wavelength must be taken into account for the evaluation of the Tyr residues contribution to the bulk fluorescence of protein, and in principle, it also may be used for the development of an approach for the decomposition of a multicomponent protein fluorescence spectrum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/pr0498077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/pr0498077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Bartolucci C; Scognamiglio V; Antonacci A; Fraceto LF;handle: 20.500.14243/445358
We describe a circular framework, divided into segments addressing specific aspects of potentially green interventions, that allows for a quick assessment of what makes nanotechnologies applied to agriculture green.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nantod.2022.101389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nantod.2022.101389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Bartolucci C; Scognamiglio V; Antonacci A; Fraceto LF;handle: 20.500.14243/445358
We describe a circular framework, divided into segments addressing specific aspects of potentially green interventions, that allows for a quick assessment of what makes nanotechnologies applied to agriculture green.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nantod.2022.101389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nantod.2022.101389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu