- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Jitendra Kumar Singh; Bhawana Chaurasia; Anamika Dubey; Alexis Manuel Faneite Noguera; +7 AuthorsJitendra Kumar Singh; Bhawana Chaurasia; Anamika Dubey; Alexis Manuel Faneite Noguera; Aditi Gupta; Richa Kothari; Chandrama Prakash Upadhyaya; Ashwani Kumar; Abeer Hashem; Abdulaziz A. Alqarawi; Elsayed Fathi Abd Allah;doi: 10.3390/su13010245
Water hyacinth is a rapidly growing troublesome aquatic weed plant, which causes eutrophication in water bodies and irreversible damage to the ecological system. In this work, we have investigated the water hyacinth biomass (WHB) hydrolysis efficacy of dilute alkaline (DA) pretreatment followed by biological pretreatment with white-rot fungus Alternaria alternata strain AKJK-2. The effectiveness of the dilute alkaline (DA) and biological pretreatment process on WHB was confirmed by using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectrophotometer (FTIR), and was further visualized by Scanning Electron Microscope (SEM) and Confocal Laser Scanning Microscopy (CLSM). XRD spectra showed the increase in the crystallinity of pretreated samples, attributed to the elimination of amorphous components as lignin and hemicellulose. FTIR peak analysis of pre-treated WHB showed substantial changes in the absorption of cellulose functional groups and the elimination of lignin signals. Scanning electron microscopy (SEM) images showed firm, compact, highly ordered, and rigid fibril structures without degradation in the untreated WHB sample, while the pretreated samples exhibited loose, dispersed, and distorted structures. XRD indices (Segal, Landis, and Faneite), and FTIR indices [Hydrogen bond intensity (HBI); Total crystallinity index (TCI); and Lateral order crystallinity (LOI)] results were similar to the aforementioned results, and also showed an increase in the crystallinity both in alkaline and biological pretreatments. Alkaline pretreated WHB, with these indices, also showed the highest crystallinity and a crystalline allomorphs mixture of cellulose I (native) and cellulose II. These results were further validated by the CLSM, wherein fluorescent signals were lost after the pretreatment of WHB over control. Overall, these findings showed the significant potential of integrated assessment tools with chemical and biological pretreatment for large-scale utilization and bioconversion of this potential aquatic weed for bioenergy production.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/245/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/245/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Jitendra Kumar Singh; Bhawana Chaurasia; Anamika Dubey; Alexis Manuel Faneite Noguera; +7 AuthorsJitendra Kumar Singh; Bhawana Chaurasia; Anamika Dubey; Alexis Manuel Faneite Noguera; Aditi Gupta; Richa Kothari; Chandrama Prakash Upadhyaya; Ashwani Kumar; Abeer Hashem; Abdulaziz A. Alqarawi; Elsayed Fathi Abd Allah;doi: 10.3390/su13010245
Water hyacinth is a rapidly growing troublesome aquatic weed plant, which causes eutrophication in water bodies and irreversible damage to the ecological system. In this work, we have investigated the water hyacinth biomass (WHB) hydrolysis efficacy of dilute alkaline (DA) pretreatment followed by biological pretreatment with white-rot fungus Alternaria alternata strain AKJK-2. The effectiveness of the dilute alkaline (DA) and biological pretreatment process on WHB was confirmed by using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectrophotometer (FTIR), and was further visualized by Scanning Electron Microscope (SEM) and Confocal Laser Scanning Microscopy (CLSM). XRD spectra showed the increase in the crystallinity of pretreated samples, attributed to the elimination of amorphous components as lignin and hemicellulose. FTIR peak analysis of pre-treated WHB showed substantial changes in the absorption of cellulose functional groups and the elimination of lignin signals. Scanning electron microscopy (SEM) images showed firm, compact, highly ordered, and rigid fibril structures without degradation in the untreated WHB sample, while the pretreated samples exhibited loose, dispersed, and distorted structures. XRD indices (Segal, Landis, and Faneite), and FTIR indices [Hydrogen bond intensity (HBI); Total crystallinity index (TCI); and Lateral order crystallinity (LOI)] results were similar to the aforementioned results, and also showed an increase in the crystallinity both in alkaline and biological pretreatments. Alkaline pretreated WHB, with these indices, also showed the highest crystallinity and a crystalline allomorphs mixture of cellulose I (native) and cellulose II. These results were further validated by the CLSM, wherein fluorescent signals were lost after the pretreatment of WHB over control. Overall, these findings showed the significant potential of integrated assessment tools with chemical and biological pretreatment for large-scale utilization and bioconversion of this potential aquatic weed for bioenergy production.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/245/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/245/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Vinayak V. Pathak; Paul N. Black; V.V. Tyagi; Arya Pandey; Richa Kothari; Richa Kothari; Richa Kothari;pmid: 30388653
An experimental study was performed to evaluate the comparative efficiency of bio-flocculant (waste egg shell), laboratory available calcium carbonate (LACC) and alum (Al2 (SO4)3) for harvesting of unicellular microalga, Chlorella pyrenoidosa. The influence of pH on zeta potential (ζ) was also studied to explain the chemistry of flocculation process. The maximum harvesting efficiency (99%) was obtained with alum with deformities in algal cell surfaces. Waste egg-shell material is developed as a low-cost bio-flocculant for harvesting of Chlorella pyrenoidosa using 100 mg egg-shell bio-flocculant/L and 100 mg LACC/L, zeta potential analysis was completed to further understand the chemistry of harvesting efficiency over the different ranges of pH (2.0, 4.0, 6.0, 8.0, and 10.0). The optimized range for harvesting efficiency (HE) of pH is 4.0-8.0 for both flocculants. Maximal harvesting efficiency was achieved at pH 4.0 (99%) and pH 8.0 (95%) with bio-flocculant and LACC respectively. Hence, bio-flocculant based harvesting method is found as the best way to dewatering the algal biomass from aqueous medium with entire and intact algal cell surface with environment friendly and cost-effective approach.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.09.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.09.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Vinayak V. Pathak; Paul N. Black; V.V. Tyagi; Arya Pandey; Richa Kothari; Richa Kothari; Richa Kothari;pmid: 30388653
An experimental study was performed to evaluate the comparative efficiency of bio-flocculant (waste egg shell), laboratory available calcium carbonate (LACC) and alum (Al2 (SO4)3) for harvesting of unicellular microalga, Chlorella pyrenoidosa. The influence of pH on zeta potential (ζ) was also studied to explain the chemistry of flocculation process. The maximum harvesting efficiency (99%) was obtained with alum with deformities in algal cell surfaces. Waste egg-shell material is developed as a low-cost bio-flocculant for harvesting of Chlorella pyrenoidosa using 100 mg egg-shell bio-flocculant/L and 100 mg LACC/L, zeta potential analysis was completed to further understand the chemistry of harvesting efficiency over the different ranges of pH (2.0, 4.0, 6.0, 8.0, and 10.0). The optimized range for harvesting efficiency (HE) of pH is 4.0-8.0 for both flocculants. Maximal harvesting efficiency was achieved at pH 4.0 (99%) and pH 8.0 (95%) with bio-flocculant and LACC respectively. Hence, bio-flocculant based harvesting method is found as the best way to dewatering the algal biomass from aqueous medium with entire and intact algal cell surface with environment friendly and cost-effective approach.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.09.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.09.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Shamshad, Ahmad; Kashifa, Iqbal; Richa, Kothari; Har Mohan, Singh; Ahmet, Sari; V V, Tyagi;pmid: 35427696
Fossil fuels are sharing a large portion of energy demand. Conventional energy sources emit a huge amount of greenhouse gas into the atmosphere, which creates energy and environmental challenges for the ecosystem. To fulfill the world energy demand and to support environmental as well as economic development in a sustainable way, with the utilization of technological advancement of renewable energy resources, algae are presently believed as most adaptable feedstock materials for bioenergy production. Algae has a high fixation rate of atmospheric carbon dioxide which supports to fast growth rate with high productivity per unit area in the form of renewable algal biomass. The present article aims to elaborate on the three generations of biofuels, sustainable microalgae biomass production, cultivation systems, and a wide range of growth parameters. The microalgae harvesting methods and their challenges are also discussed, with a special focus on lipid extraction methods and future r recommendations. The upstream and downstream processes of microalgae could help to harness the microalgae energy in an eco-friendly manner and will help in achieving overall sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2022.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2022.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Shamshad, Ahmad; Kashifa, Iqbal; Richa, Kothari; Har Mohan, Singh; Ahmet, Sari; V V, Tyagi;pmid: 35427696
Fossil fuels are sharing a large portion of energy demand. Conventional energy sources emit a huge amount of greenhouse gas into the atmosphere, which creates energy and environmental challenges for the ecosystem. To fulfill the world energy demand and to support environmental as well as economic development in a sustainable way, with the utilization of technological advancement of renewable energy resources, algae are presently believed as most adaptable feedstock materials for bioenergy production. Algae has a high fixation rate of atmospheric carbon dioxide which supports to fast growth rate with high productivity per unit area in the form of renewable algal biomass. The present article aims to elaborate on the three generations of biofuels, sustainable microalgae biomass production, cultivation systems, and a wide range of growth parameters. The microalgae harvesting methods and their challenges are also discussed, with a special focus on lipid extraction methods and future r recommendations. The upstream and downstream processes of microalgae could help to harness the microalgae energy in an eco-friendly manner and will help in achieving overall sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2022.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2022.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:IMR Press Richa Kothari; Virendra Kumar; Vinayak V. Pathak; Ochieng Aoyi; Shamshad Ahmad; V.V. Tyagi;doi: 10.2741/4542
pmid: 28199201
Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/4542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/4542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:IMR Press Richa Kothari; Virendra Kumar; Vinayak V. Pathak; Ochieng Aoyi; Shamshad Ahmad; V.V. Tyagi;doi: 10.2741/4542
pmid: 28199201
Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/4542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/4542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IMR Press Authors: Ashwani Kumar; Chandrama Prakash Upadhyaya; Jitendra Kumar Singh; Richa Kothari; +3 AuthorsAshwani Kumar; Chandrama Prakash Upadhyaya; Jitendra Kumar Singh; Richa Kothari; V.V. Tyagi; Preeti Vyas; Anamika Dubey;doi: 10.2741/s521
pmid: 29772563
The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products. Therefore, pretreatment of the biomass is necessary prerequisite for efficient hydrolysis of lignocelluloses into different type of fermentable sugars. The physiochemical, biochemical and biological pretreatment methods are considered as most promising technologies for the biomass hydrolysis and are discussed in this review article. We also discussed the recent advancements and modern trends in pretreatment methods of lignocelluloses conversion into ethanol with special focus on fermentation methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/s521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/s521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IMR Press Authors: Ashwani Kumar; Chandrama Prakash Upadhyaya; Jitendra Kumar Singh; Richa Kothari; +3 AuthorsAshwani Kumar; Chandrama Prakash Upadhyaya; Jitendra Kumar Singh; Richa Kothari; V.V. Tyagi; Preeti Vyas; Anamika Dubey;doi: 10.2741/s521
pmid: 29772563
The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products. Therefore, pretreatment of the biomass is necessary prerequisite for efficient hydrolysis of lignocelluloses into different type of fermentable sugars. The physiochemical, biochemical and biological pretreatment methods are considered as most promising technologies for the biomass hydrolysis and are discussed in this review article. We also discussed the recent advancements and modern trends in pretreatment methods of lignocelluloses conversion into ethanol with special focus on fermentation methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/s521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/s521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Vimal Chandra Pandey; Richa Kothari; Pradeep K. Majhi; Naveen Kumar Arora; V.V. Tyagi; V.V. Tyagi;pmid: 33950268
The current study focused on the pollution remediation of textile industry wastewater by using Chlorella pyrenoidosa in two different physical forms: free algal biomass and immobilized algal biomass. The hypothesis behind the present study was to analyze the pollution reduction efficiency of immobilized algal biomass and free algal biomass on comparative scale on the basis of the adsorption process which is directly proportional with the surface area of the adsorbate. So, in this context the immobilized form of algae could enhance the pollution reduction efficiency due to availability of more surface area. So, the textile industry wastewater was treated by both free algal biomass and immobilized algal biomass and the major wastewater contributors like nitrate, phosphate, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were assessed before and after the treatment process. To conclude the optimum comparative results, the pH of wastewater was maintained constant, as it can capitalize or moderate the adsorption process (initial pH of was 8.2 ± 0.1, but it was maintained to 8). The contamination remediation was found to be effective with immobilized algal biomass (46.7% of nitrate, 59.4% of phosphate, 83.1% BOD and 83.0% of COD) than free algal biomass (43.2% of nitrate, 56.7% of phosphate, 71.4% of BOD and 78.0% COD).
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2022Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-021-03208-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2022Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-021-03208-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Vimal Chandra Pandey; Richa Kothari; Pradeep K. Majhi; Naveen Kumar Arora; V.V. Tyagi; V.V. Tyagi;pmid: 33950268
The current study focused on the pollution remediation of textile industry wastewater by using Chlorella pyrenoidosa in two different physical forms: free algal biomass and immobilized algal biomass. The hypothesis behind the present study was to analyze the pollution reduction efficiency of immobilized algal biomass and free algal biomass on comparative scale on the basis of the adsorption process which is directly proportional with the surface area of the adsorbate. So, in this context the immobilized form of algae could enhance the pollution reduction efficiency due to availability of more surface area. So, the textile industry wastewater was treated by both free algal biomass and immobilized algal biomass and the major wastewater contributors like nitrate, phosphate, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were assessed before and after the treatment process. To conclude the optimum comparative results, the pH of wastewater was maintained constant, as it can capitalize or moderate the adsorption process (initial pH of was 8.2 ± 0.1, but it was maintained to 8). The contamination remediation was found to be effective with immobilized algal biomass (46.7% of nitrate, 59.4% of phosphate, 83.1% BOD and 83.0% of COD) than free algal biomass (43.2% of nitrate, 56.7% of phosphate, 71.4% of BOD and 78.0% COD).
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2022Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-021-03208-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2022Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-021-03208-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Har Mohan Singh; Shamshad Ahmad; Ahmet Sarı; Ahmet Sarı; Richa Kothari; Rifat Azam; V.V. Tyagi;pmid: 34838946
Open sewage contaminated channel wastewater (OSCCW) has high pollutant loads, responsible for eutrophication, when mixed with various channels of urban communities. But, these pollutants can be converted and recovered into useful end products with the help of algal species. In this study, two species of Chlorella (C. vulgaris and C. pyrenoidosa) were selected and investigated for the production of algal biomass and nutrient removal efficiencies with 50% concentration of OSCCW, in a comparative way at lab-scale. Chlorella sp. cultivated in OSCCW have removed nitrate (76.9-78.8%) and phosphate (67.6-79.7%) whereas COD (72.4-76.2%) and BOD (62.3-72.4%) respectively. Correlation analysis was investigated between physico-chemical parameters and biochemical profile of both species to analyze the positive and negative correlation between two variables. The bio-chemical profile and biomass productivity of both species of Chlorella were observed well on the basis of productivity of biomass (60.1, 56.5 mg/l/d), carbohydrate (15.71, 8.82 mg/l/d), protein (11.21, 15.82 mg/l/d), lipid (20.8, 17.5 mg/l/d) and chlorophyll (0.78, 0.67 mg/l/d) in OSCCW. The maximum lipid content (34.6%) was obtained with C. pyrenoidosa as compared to C. vulgaris. Findings also support that OSCCW is well-off with nutrient resources, which can be suitable alternative for algal biomass production and remediated wastewater can be used for animal and fish farming type activities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2021.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2021.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Har Mohan Singh; Shamshad Ahmad; Ahmet Sarı; Ahmet Sarı; Richa Kothari; Rifat Azam; V.V. Tyagi;pmid: 34838946
Open sewage contaminated channel wastewater (OSCCW) has high pollutant loads, responsible for eutrophication, when mixed with various channels of urban communities. But, these pollutants can be converted and recovered into useful end products with the help of algal species. In this study, two species of Chlorella (C. vulgaris and C. pyrenoidosa) were selected and investigated for the production of algal biomass and nutrient removal efficiencies with 50% concentration of OSCCW, in a comparative way at lab-scale. Chlorella sp. cultivated in OSCCW have removed nitrate (76.9-78.8%) and phosphate (67.6-79.7%) whereas COD (72.4-76.2%) and BOD (62.3-72.4%) respectively. Correlation analysis was investigated between physico-chemical parameters and biochemical profile of both species to analyze the positive and negative correlation between two variables. The bio-chemical profile and biomass productivity of both species of Chlorella were observed well on the basis of productivity of biomass (60.1, 56.5 mg/l/d), carbohydrate (15.71, 8.82 mg/l/d), protein (11.21, 15.82 mg/l/d), lipid (20.8, 17.5 mg/l/d) and chlorophyll (0.78, 0.67 mg/l/d) in OSCCW. The maximum lipid content (34.6%) was obtained with C. pyrenoidosa as compared to C. vulgaris. Findings also support that OSCCW is well-off with nutrient resources, which can be suitable alternative for algal biomass production and remediated wastewater can be used for animal and fish farming type activities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2021.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2021.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Har Mohan Singh; P.S. Slathia; Richa Kothari; Rifat Azam; V.V. Tyagi; Bhaskar Singh;pmid: 32738558
The aim of this work was to study the cultivation of Chlorella pyrenoidosa on poultry excreta leachate to enhance the biochemical composition of algal biomass. The growth of microalgae was analyzed with different concentrations of poultry excreta leachate in BG-11 and distilled water. The biomolecules observed have high value in the form of carbohydrates (0.64 gL-1), protein (1.02 gL-1), chlorophyll (20 µg mL-1) and lipid amount (0.49 gL-1) with PEL BG -25%. Biomass produced in PEL BG -25% was also found to be 60% (2.5 gL-1) higher than the BG-11 medium as a control (1.5gL-1). Recovery of nutrients was observed with leachate wastewater concentration in terms of nitrate (84.2%), ammonium nitrogen (53.1%), and inorganic phosphate (96.2%). Hence, sustainability of microalgae cultivation in wastewater provides a new insight for resource utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Har Mohan Singh; P.S. Slathia; Richa Kothari; Rifat Azam; V.V. Tyagi; Bhaskar Singh;pmid: 32738558
The aim of this work was to study the cultivation of Chlorella pyrenoidosa on poultry excreta leachate to enhance the biochemical composition of algal biomass. The growth of microalgae was analyzed with different concentrations of poultry excreta leachate in BG-11 and distilled water. The biomolecules observed have high value in the form of carbohydrates (0.64 gL-1), protein (1.02 gL-1), chlorophyll (20 µg mL-1) and lipid amount (0.49 gL-1) with PEL BG -25%. Biomass produced in PEL BG -25% was also found to be 60% (2.5 gL-1) higher than the BG-11 medium as a control (1.5gL-1). Recovery of nutrients was observed with leachate wastewater concentration in terms of nitrate (84.2%), ammonium nitrogen (53.1%), and inorganic phosphate (96.2%). Hence, sustainability of microalgae cultivation in wastewater provides a new insight for resource utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Sonika, Kumari; Vinod, Kumar; Richa, Kothari; Pankaj, Kumar;pmid: 35639322
Dairy wastewaters (DWW) are rich in several pollutants, including high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), and their unsafe disposal may cause damage to the environment. In this study, Chlorella vulgaris (identified as NIES:227 strain based on 28s rRNA sequencing) was isolated from the freshwater habitat of the Ganga River at Haridwar, India, and further tested for its efficacy in treating DWW. The phycoremediation experiments were conducted using three different DWW concentrations (0, 50, and 100%), operating temperatures (20, 25, and 30 °C), and light intensities (2000, 3000, and 4000 lx) using response surface methodology. Results showed that after 16 days of experiments, a significant (P < 0.05) reduction in BOD (96.65%) and COD (87.50%) along with a maximum biomass production of 1.757 g/L was achieved using 57.72% of dairy industry wastewater, 24.16 °C of reactor temperature, and 3874.51 lx of light intensity. The RSM models had coefficient of determination (R2) values above 0.9459 with a minimum difference between measured and predicted responses. Therefore, the findings of this study suggest that the isolated C. vulgaris can be effectively used to treat dairy wastewater along with significant production of algal biomass which can be further used for the generation of low-cost biofuel and other materials.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-21069-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-21069-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Sonika, Kumari; Vinod, Kumar; Richa, Kothari; Pankaj, Kumar;pmid: 35639322
Dairy wastewaters (DWW) are rich in several pollutants, including high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), and their unsafe disposal may cause damage to the environment. In this study, Chlorella vulgaris (identified as NIES:227 strain based on 28s rRNA sequencing) was isolated from the freshwater habitat of the Ganga River at Haridwar, India, and further tested for its efficacy in treating DWW. The phycoremediation experiments were conducted using three different DWW concentrations (0, 50, and 100%), operating temperatures (20, 25, and 30 °C), and light intensities (2000, 3000, and 4000 lx) using response surface methodology. Results showed that after 16 days of experiments, a significant (P < 0.05) reduction in BOD (96.65%) and COD (87.50%) along with a maximum biomass production of 1.757 g/L was achieved using 57.72% of dairy industry wastewater, 24.16 °C of reactor temperature, and 3874.51 lx of light intensity. The RSM models had coefficient of determination (R2) values above 0.9459 with a minimum difference between measured and predicted responses. Therefore, the findings of this study suggest that the isolated C. vulgaris can be effectively used to treat dairy wastewater along with significant production of algal biomass which can be further used for the generation of low-cost biofuel and other materials.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-21069-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-21069-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Bhaskar Singh; John Korstad; Abhishek Guldhe; Richa Kothari;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.972074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.972074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Bhaskar Singh; John Korstad; Abhishek Guldhe; Richa Kothari;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.972074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.972074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Jitendra Kumar Singh; Bhawana Chaurasia; Anamika Dubey; Alexis Manuel Faneite Noguera; +7 AuthorsJitendra Kumar Singh; Bhawana Chaurasia; Anamika Dubey; Alexis Manuel Faneite Noguera; Aditi Gupta; Richa Kothari; Chandrama Prakash Upadhyaya; Ashwani Kumar; Abeer Hashem; Abdulaziz A. Alqarawi; Elsayed Fathi Abd Allah;doi: 10.3390/su13010245
Water hyacinth is a rapidly growing troublesome aquatic weed plant, which causes eutrophication in water bodies and irreversible damage to the ecological system. In this work, we have investigated the water hyacinth biomass (WHB) hydrolysis efficacy of dilute alkaline (DA) pretreatment followed by biological pretreatment with white-rot fungus Alternaria alternata strain AKJK-2. The effectiveness of the dilute alkaline (DA) and biological pretreatment process on WHB was confirmed by using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectrophotometer (FTIR), and was further visualized by Scanning Electron Microscope (SEM) and Confocal Laser Scanning Microscopy (CLSM). XRD spectra showed the increase in the crystallinity of pretreated samples, attributed to the elimination of amorphous components as lignin and hemicellulose. FTIR peak analysis of pre-treated WHB showed substantial changes in the absorption of cellulose functional groups and the elimination of lignin signals. Scanning electron microscopy (SEM) images showed firm, compact, highly ordered, and rigid fibril structures without degradation in the untreated WHB sample, while the pretreated samples exhibited loose, dispersed, and distorted structures. XRD indices (Segal, Landis, and Faneite), and FTIR indices [Hydrogen bond intensity (HBI); Total crystallinity index (TCI); and Lateral order crystallinity (LOI)] results were similar to the aforementioned results, and also showed an increase in the crystallinity both in alkaline and biological pretreatments. Alkaline pretreated WHB, with these indices, also showed the highest crystallinity and a crystalline allomorphs mixture of cellulose I (native) and cellulose II. These results were further validated by the CLSM, wherein fluorescent signals were lost after the pretreatment of WHB over control. Overall, these findings showed the significant potential of integrated assessment tools with chemical and biological pretreatment for large-scale utilization and bioconversion of this potential aquatic weed for bioenergy production.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/245/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/245/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Jitendra Kumar Singh; Bhawana Chaurasia; Anamika Dubey; Alexis Manuel Faneite Noguera; +7 AuthorsJitendra Kumar Singh; Bhawana Chaurasia; Anamika Dubey; Alexis Manuel Faneite Noguera; Aditi Gupta; Richa Kothari; Chandrama Prakash Upadhyaya; Ashwani Kumar; Abeer Hashem; Abdulaziz A. Alqarawi; Elsayed Fathi Abd Allah;doi: 10.3390/su13010245
Water hyacinth is a rapidly growing troublesome aquatic weed plant, which causes eutrophication in water bodies and irreversible damage to the ecological system. In this work, we have investigated the water hyacinth biomass (WHB) hydrolysis efficacy of dilute alkaline (DA) pretreatment followed by biological pretreatment with white-rot fungus Alternaria alternata strain AKJK-2. The effectiveness of the dilute alkaline (DA) and biological pretreatment process on WHB was confirmed by using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectrophotometer (FTIR), and was further visualized by Scanning Electron Microscope (SEM) and Confocal Laser Scanning Microscopy (CLSM). XRD spectra showed the increase in the crystallinity of pretreated samples, attributed to the elimination of amorphous components as lignin and hemicellulose. FTIR peak analysis of pre-treated WHB showed substantial changes in the absorption of cellulose functional groups and the elimination of lignin signals. Scanning electron microscopy (SEM) images showed firm, compact, highly ordered, and rigid fibril structures without degradation in the untreated WHB sample, while the pretreated samples exhibited loose, dispersed, and distorted structures. XRD indices (Segal, Landis, and Faneite), and FTIR indices [Hydrogen bond intensity (HBI); Total crystallinity index (TCI); and Lateral order crystallinity (LOI)] results were similar to the aforementioned results, and also showed an increase in the crystallinity both in alkaline and biological pretreatments. Alkaline pretreated WHB, with these indices, also showed the highest crystallinity and a crystalline allomorphs mixture of cellulose I (native) and cellulose II. These results were further validated by the CLSM, wherein fluorescent signals were lost after the pretreatment of WHB over control. Overall, these findings showed the significant potential of integrated assessment tools with chemical and biological pretreatment for large-scale utilization and bioconversion of this potential aquatic weed for bioenergy production.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/245/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/245/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Vinayak V. Pathak; Paul N. Black; V.V. Tyagi; Arya Pandey; Richa Kothari; Richa Kothari; Richa Kothari;pmid: 30388653
An experimental study was performed to evaluate the comparative efficiency of bio-flocculant (waste egg shell), laboratory available calcium carbonate (LACC) and alum (Al2 (SO4)3) for harvesting of unicellular microalga, Chlorella pyrenoidosa. The influence of pH on zeta potential (ζ) was also studied to explain the chemistry of flocculation process. The maximum harvesting efficiency (99%) was obtained with alum with deformities in algal cell surfaces. Waste egg-shell material is developed as a low-cost bio-flocculant for harvesting of Chlorella pyrenoidosa using 100 mg egg-shell bio-flocculant/L and 100 mg LACC/L, zeta potential analysis was completed to further understand the chemistry of harvesting efficiency over the different ranges of pH (2.0, 4.0, 6.0, 8.0, and 10.0). The optimized range for harvesting efficiency (HE) of pH is 4.0-8.0 for both flocculants. Maximal harvesting efficiency was achieved at pH 4.0 (99%) and pH 8.0 (95%) with bio-flocculant and LACC respectively. Hence, bio-flocculant based harvesting method is found as the best way to dewatering the algal biomass from aqueous medium with entire and intact algal cell surface with environment friendly and cost-effective approach.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.09.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.09.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Vinayak V. Pathak; Paul N. Black; V.V. Tyagi; Arya Pandey; Richa Kothari; Richa Kothari; Richa Kothari;pmid: 30388653
An experimental study was performed to evaluate the comparative efficiency of bio-flocculant (waste egg shell), laboratory available calcium carbonate (LACC) and alum (Al2 (SO4)3) for harvesting of unicellular microalga, Chlorella pyrenoidosa. The influence of pH on zeta potential (ζ) was also studied to explain the chemistry of flocculation process. The maximum harvesting efficiency (99%) was obtained with alum with deformities in algal cell surfaces. Waste egg-shell material is developed as a low-cost bio-flocculant for harvesting of Chlorella pyrenoidosa using 100 mg egg-shell bio-flocculant/L and 100 mg LACC/L, zeta potential analysis was completed to further understand the chemistry of harvesting efficiency over the different ranges of pH (2.0, 4.0, 6.0, 8.0, and 10.0). The optimized range for harvesting efficiency (HE) of pH is 4.0-8.0 for both flocculants. Maximal harvesting efficiency was achieved at pH 4.0 (99%) and pH 8.0 (95%) with bio-flocculant and LACC respectively. Hence, bio-flocculant based harvesting method is found as the best way to dewatering the algal biomass from aqueous medium with entire and intact algal cell surface with environment friendly and cost-effective approach.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.09.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2018.09.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Shamshad, Ahmad; Kashifa, Iqbal; Richa, Kothari; Har Mohan, Singh; Ahmet, Sari; V V, Tyagi;pmid: 35427696
Fossil fuels are sharing a large portion of energy demand. Conventional energy sources emit a huge amount of greenhouse gas into the atmosphere, which creates energy and environmental challenges for the ecosystem. To fulfill the world energy demand and to support environmental as well as economic development in a sustainable way, with the utilization of technological advancement of renewable energy resources, algae are presently believed as most adaptable feedstock materials for bioenergy production. Algae has a high fixation rate of atmospheric carbon dioxide which supports to fast growth rate with high productivity per unit area in the form of renewable algal biomass. The present article aims to elaborate on the three generations of biofuels, sustainable microalgae biomass production, cultivation systems, and a wide range of growth parameters. The microalgae harvesting methods and their challenges are also discussed, with a special focus on lipid extraction methods and future r recommendations. The upstream and downstream processes of microalgae could help to harness the microalgae energy in an eco-friendly manner and will help in achieving overall sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2022.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2022.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Shamshad, Ahmad; Kashifa, Iqbal; Richa, Kothari; Har Mohan, Singh; Ahmet, Sari; V V, Tyagi;pmid: 35427696
Fossil fuels are sharing a large portion of energy demand. Conventional energy sources emit a huge amount of greenhouse gas into the atmosphere, which creates energy and environmental challenges for the ecosystem. To fulfill the world energy demand and to support environmental as well as economic development in a sustainable way, with the utilization of technological advancement of renewable energy resources, algae are presently believed as most adaptable feedstock materials for bioenergy production. Algae has a high fixation rate of atmospheric carbon dioxide which supports to fast growth rate with high productivity per unit area in the form of renewable algal biomass. The present article aims to elaborate on the three generations of biofuels, sustainable microalgae biomass production, cultivation systems, and a wide range of growth parameters. The microalgae harvesting methods and their challenges are also discussed, with a special focus on lipid extraction methods and future r recommendations. The upstream and downstream processes of microalgae could help to harness the microalgae energy in an eco-friendly manner and will help in achieving overall sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2022.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2022.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:IMR Press Richa Kothari; Virendra Kumar; Vinayak V. Pathak; Ochieng Aoyi; Shamshad Ahmad; V.V. Tyagi;doi: 10.2741/4542
pmid: 28199201
Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/4542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/4542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:IMR Press Richa Kothari; Virendra Kumar; Vinayak V. Pathak; Ochieng Aoyi; Shamshad Ahmad; V.V. Tyagi;doi: 10.2741/4542
pmid: 28199201
Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/4542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/4542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IMR Press Authors: Ashwani Kumar; Chandrama Prakash Upadhyaya; Jitendra Kumar Singh; Richa Kothari; +3 AuthorsAshwani Kumar; Chandrama Prakash Upadhyaya; Jitendra Kumar Singh; Richa Kothari; V.V. Tyagi; Preeti Vyas; Anamika Dubey;doi: 10.2741/s521
pmid: 29772563
The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products. Therefore, pretreatment of the biomass is necessary prerequisite for efficient hydrolysis of lignocelluloses into different type of fermentable sugars. The physiochemical, biochemical and biological pretreatment methods are considered as most promising technologies for the biomass hydrolysis and are discussed in this review article. We also discussed the recent advancements and modern trends in pretreatment methods of lignocelluloses conversion into ethanol with special focus on fermentation methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/s521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/s521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IMR Press Authors: Ashwani Kumar; Chandrama Prakash Upadhyaya; Jitendra Kumar Singh; Richa Kothari; +3 AuthorsAshwani Kumar; Chandrama Prakash Upadhyaya; Jitendra Kumar Singh; Richa Kothari; V.V. Tyagi; Preeti Vyas; Anamika Dubey;doi: 10.2741/s521
pmid: 29772563
The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products. Therefore, pretreatment of the biomass is necessary prerequisite for efficient hydrolysis of lignocelluloses into different type of fermentable sugars. The physiochemical, biochemical and biological pretreatment methods are considered as most promising technologies for the biomass hydrolysis and are discussed in this review article. We also discussed the recent advancements and modern trends in pretreatment methods of lignocelluloses conversion into ethanol with special focus on fermentation methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/s521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2741/s521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Vimal Chandra Pandey; Richa Kothari; Pradeep K. Majhi; Naveen Kumar Arora; V.V. Tyagi; V.V. Tyagi;pmid: 33950268
The current study focused on the pollution remediation of textile industry wastewater by using Chlorella pyrenoidosa in two different physical forms: free algal biomass and immobilized algal biomass. The hypothesis behind the present study was to analyze the pollution reduction efficiency of immobilized algal biomass and free algal biomass on comparative scale on the basis of the adsorption process which is directly proportional with the surface area of the adsorbate. So, in this context the immobilized form of algae could enhance the pollution reduction efficiency due to availability of more surface area. So, the textile industry wastewater was treated by both free algal biomass and immobilized algal biomass and the major wastewater contributors like nitrate, phosphate, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were assessed before and after the treatment process. To conclude the optimum comparative results, the pH of wastewater was maintained constant, as it can capitalize or moderate the adsorption process (initial pH of was 8.2 ± 0.1, but it was maintained to 8). The contamination remediation was found to be effective with immobilized algal biomass (46.7% of nitrate, 59.4% of phosphate, 83.1% BOD and 83.0% of COD) than free algal biomass (43.2% of nitrate, 56.7% of phosphate, 71.4% of BOD and 78.0% COD).
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2022Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-021-03208-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2022Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-021-03208-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Vimal Chandra Pandey; Richa Kothari; Pradeep K. Majhi; Naveen Kumar Arora; V.V. Tyagi; V.V. Tyagi;pmid: 33950268
The current study focused on the pollution remediation of textile industry wastewater by using Chlorella pyrenoidosa in two different physical forms: free algal biomass and immobilized algal biomass. The hypothesis behind the present study was to analyze the pollution reduction efficiency of immobilized algal biomass and free algal biomass on comparative scale on the basis of the adsorption process which is directly proportional with the surface area of the adsorbate. So, in this context the immobilized form of algae could enhance the pollution reduction efficiency due to availability of more surface area. So, the textile industry wastewater was treated by both free algal biomass and immobilized algal biomass and the major wastewater contributors like nitrate, phosphate, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were assessed before and after the treatment process. To conclude the optimum comparative results, the pH of wastewater was maintained constant, as it can capitalize or moderate the adsorption process (initial pH of was 8.2 ± 0.1, but it was maintained to 8). The contamination remediation was found to be effective with immobilized algal biomass (46.7% of nitrate, 59.4% of phosphate, 83.1% BOD and 83.0% of COD) than free algal biomass (43.2% of nitrate, 56.7% of phosphate, 71.4% of BOD and 78.0% COD).
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2022Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-021-03208-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2022Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-021-03208-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Har Mohan Singh; Shamshad Ahmad; Ahmet Sarı; Ahmet Sarı; Richa Kothari; Rifat Azam; V.V. Tyagi;pmid: 34838946
Open sewage contaminated channel wastewater (OSCCW) has high pollutant loads, responsible for eutrophication, when mixed with various channels of urban communities. But, these pollutants can be converted and recovered into useful end products with the help of algal species. In this study, two species of Chlorella (C. vulgaris and C. pyrenoidosa) were selected and investigated for the production of algal biomass and nutrient removal efficiencies with 50% concentration of OSCCW, in a comparative way at lab-scale. Chlorella sp. cultivated in OSCCW have removed nitrate (76.9-78.8%) and phosphate (67.6-79.7%) whereas COD (72.4-76.2%) and BOD (62.3-72.4%) respectively. Correlation analysis was investigated between physico-chemical parameters and biochemical profile of both species to analyze the positive and negative correlation between two variables. The bio-chemical profile and biomass productivity of both species of Chlorella were observed well on the basis of productivity of biomass (60.1, 56.5 mg/l/d), carbohydrate (15.71, 8.82 mg/l/d), protein (11.21, 15.82 mg/l/d), lipid (20.8, 17.5 mg/l/d) and chlorophyll (0.78, 0.67 mg/l/d) in OSCCW. The maximum lipid content (34.6%) was obtained with C. pyrenoidosa as compared to C. vulgaris. Findings also support that OSCCW is well-off with nutrient resources, which can be suitable alternative for algal biomass production and remediated wastewater can be used for animal and fish farming type activities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2021.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2021.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Har Mohan Singh; Shamshad Ahmad; Ahmet Sarı; Ahmet Sarı; Richa Kothari; Rifat Azam; V.V. Tyagi;pmid: 34838946
Open sewage contaminated channel wastewater (OSCCW) has high pollutant loads, responsible for eutrophication, when mixed with various channels of urban communities. But, these pollutants can be converted and recovered into useful end products with the help of algal species. In this study, two species of Chlorella (C. vulgaris and C. pyrenoidosa) were selected and investigated for the production of algal biomass and nutrient removal efficiencies with 50% concentration of OSCCW, in a comparative way at lab-scale. Chlorella sp. cultivated in OSCCW have removed nitrate (76.9-78.8%) and phosphate (67.6-79.7%) whereas COD (72.4-76.2%) and BOD (62.3-72.4%) respectively. Correlation analysis was investigated between physico-chemical parameters and biochemical profile of both species to analyze the positive and negative correlation between two variables. The bio-chemical profile and biomass productivity of both species of Chlorella were observed well on the basis of productivity of biomass (60.1, 56.5 mg/l/d), carbohydrate (15.71, 8.82 mg/l/d), protein (11.21, 15.82 mg/l/d), lipid (20.8, 17.5 mg/l/d) and chlorophyll (0.78, 0.67 mg/l/d) in OSCCW. The maximum lipid content (34.6%) was obtained with C. pyrenoidosa as compared to C. vulgaris. Findings also support that OSCCW is well-off with nutrient resources, which can be suitable alternative for algal biomass production and remediated wastewater can be used for animal and fish farming type activities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2021.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2021.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Har Mohan Singh; P.S. Slathia; Richa Kothari; Rifat Azam; V.V. Tyagi; Bhaskar Singh;pmid: 32738558
The aim of this work was to study the cultivation of Chlorella pyrenoidosa on poultry excreta leachate to enhance the biochemical composition of algal biomass. The growth of microalgae was analyzed with different concentrations of poultry excreta leachate in BG-11 and distilled water. The biomolecules observed have high value in the form of carbohydrates (0.64 gL-1), protein (1.02 gL-1), chlorophyll (20 µg mL-1) and lipid amount (0.49 gL-1) with PEL BG -25%. Biomass produced in PEL BG -25% was also found to be 60% (2.5 gL-1) higher than the BG-11 medium as a control (1.5gL-1). Recovery of nutrients was observed with leachate wastewater concentration in terms of nitrate (84.2%), ammonium nitrogen (53.1%), and inorganic phosphate (96.2%). Hence, sustainability of microalgae cultivation in wastewater provides a new insight for resource utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Har Mohan Singh; P.S. Slathia; Richa Kothari; Rifat Azam; V.V. Tyagi; Bhaskar Singh;pmid: 32738558
The aim of this work was to study the cultivation of Chlorella pyrenoidosa on poultry excreta leachate to enhance the biochemical composition of algal biomass. The growth of microalgae was analyzed with different concentrations of poultry excreta leachate in BG-11 and distilled water. The biomolecules observed have high value in the form of carbohydrates (0.64 gL-1), protein (1.02 gL-1), chlorophyll (20 µg mL-1) and lipid amount (0.49 gL-1) with PEL BG -25%. Biomass produced in PEL BG -25% was also found to be 60% (2.5 gL-1) higher than the BG-11 medium as a control (1.5gL-1). Recovery of nutrients was observed with leachate wastewater concentration in terms of nitrate (84.2%), ammonium nitrogen (53.1%), and inorganic phosphate (96.2%). Hence, sustainability of microalgae cultivation in wastewater provides a new insight for resource utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Sonika, Kumari; Vinod, Kumar; Richa, Kothari; Pankaj, Kumar;pmid: 35639322
Dairy wastewaters (DWW) are rich in several pollutants, including high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), and their unsafe disposal may cause damage to the environment. In this study, Chlorella vulgaris (identified as NIES:227 strain based on 28s rRNA sequencing) was isolated from the freshwater habitat of the Ganga River at Haridwar, India, and further tested for its efficacy in treating DWW. The phycoremediation experiments were conducted using three different DWW concentrations (0, 50, and 100%), operating temperatures (20, 25, and 30 °C), and light intensities (2000, 3000, and 4000 lx) using response surface methodology. Results showed that after 16 days of experiments, a significant (P < 0.05) reduction in BOD (96.65%) and COD (87.50%) along with a maximum biomass production of 1.757 g/L was achieved using 57.72% of dairy industry wastewater, 24.16 °C of reactor temperature, and 3874.51 lx of light intensity. The RSM models had coefficient of determination (R2) values above 0.9459 with a minimum difference between measured and predicted responses. Therefore, the findings of this study suggest that the isolated C. vulgaris can be effectively used to treat dairy wastewater along with significant production of algal biomass which can be further used for the generation of low-cost biofuel and other materials.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-21069-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-21069-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Sonika, Kumari; Vinod, Kumar; Richa, Kothari; Pankaj, Kumar;pmid: 35639322
Dairy wastewaters (DWW) are rich in several pollutants, including high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), and their unsafe disposal may cause damage to the environment. In this study, Chlorella vulgaris (identified as NIES:227 strain based on 28s rRNA sequencing) was isolated from the freshwater habitat of the Ganga River at Haridwar, India, and further tested for its efficacy in treating DWW. The phycoremediation experiments were conducted using three different DWW concentrations (0, 50, and 100%), operating temperatures (20, 25, and 30 °C), and light intensities (2000, 3000, and 4000 lx) using response surface methodology. Results showed that after 16 days of experiments, a significant (P < 0.05) reduction in BOD (96.65%) and COD (87.50%) along with a maximum biomass production of 1.757 g/L was achieved using 57.72% of dairy industry wastewater, 24.16 °C of reactor temperature, and 3874.51 lx of light intensity. The RSM models had coefficient of determination (R2) values above 0.9459 with a minimum difference between measured and predicted responses. Therefore, the findings of this study suggest that the isolated C. vulgaris can be effectively used to treat dairy wastewater along with significant production of algal biomass which can be further used for the generation of low-cost biofuel and other materials.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-21069-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-21069-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Bhaskar Singh; John Korstad; Abhishek Guldhe; Richa Kothari;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.972074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.972074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Bhaskar Singh; John Korstad; Abhishek Guldhe; Richa Kothari;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.972074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.972074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu