- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOOrganization
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Joshua Daniel; Chad Penn; João Antonangelo; Hailin Zhang;doi: 10.3390/su122410264
Horizontal directional drilling (HDD) is a non-invasive alternative to trenching used for the installation of many common utilities. The process involves drilling fluid used to stabilize the borehole, lubricate the bit, and float cuttings to the surface. A sustainable alternative to landfill disposal is land application. Two field studies were conducted to determine the optimum application rate of HDD residuals to both established bermudagrass and bare soil seeded with bermudagrass. Residuals were applied at six rates ranging from 0 to 112 tons solid ha−1 for both trials. Soils were sampled 7, 30, and 90 days after application. Saturated paste and Mehlich-3 extractions were performed on all samples. Grass biomass was measured at the end of the study. No significant amount of nutrients or trace metals were found in the treated soils. All concentrations were in the range of typical soils. However, total dissolved solids (TDS) and sodium absorption ratio (SAR) increased with application rate. There was no significant difference in the yields of forage harvested on the established grass plots 110 days after application. Bare plots that received 22 tons solid ha−1 had higher percent ground cover than other rates. It is ecologically safe to apply HDD residuals up to 112 tons and 90 tons solid ha−1 to established bermudagrass and bare soil, respectively.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Ralph S. Tanner; Ajay Kumar; Xiao Sun; Hailin Zhang; Hasan K. Atiyeh;pmid: 29886351
Biochar has functional groups, pH buffering capacity and cation exchange capacity (CEC) that can be beneficial in syngas fermentation. This study examined the properties of biochar made from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC), and their effects on ethanol and butanol production from syngas using Clostridium carboxidivorans. Experiments were performed in 250 mL bottle reactors with a 50 mL working volume at 37 °C fed syngas containing CO:H2:CO2 (40:30:30 by volume). Results showed that PLBC and SGBC enhanced ethanol production by 90% and 73%, respectively, and butanol production by fourfold compared to standard yeast extract medium without biochar (control). CO and H2 utilization in PLBC and SGBC media increased compared to control. PLBC had the highest pH buffering capacity, CEC and total amount of cations compared with SGBC, FSBC and RCBC, which could have contributed to its highest enhancement of ethanol and butanol production.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.05.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.05.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Xiao Sun; Christopher Chukwudi Okonkwo; Raymond L. Huhnke; Thaddeus Chukwuemeka Ezeji; +3 AuthorsXiao Sun; Christopher Chukwudi Okonkwo; Raymond L. Huhnke; Thaddeus Chukwuemeka Ezeji; Yinka Adesanya; Hasan K. Atiyeh; Hailin Zhang;pmid: 31862676
Biochar can be an inexpensive pH buffer and source of mineral and trace metal nutrients in acetone-butanol-ethanol (ABE) fermentation. This study evaluated the feasibility of replacing expensive 4-morpholineethanesulfonic acid (MES) P2 buffer and mineral nutrients with biochar made from switchgrass (SGBC), forage sorghum (FSBC), redcedar (RCBC) and poultry litter (PLBC) for ABE fermentation. Fermentations using Clostridium beijerinckii ATCC 51743 in glucose and non-detoxified switchgrass hydrolysate media were performed at 35 °C in 250 mL bottles for 72 h. Medium containing buffer and minerals without biochar was the control. Similar ABE production (about 18.0 g/L) in glucose media with SGBC, FSBC and RCBC and control was measured. However in non-detoxified switchgrass hydrolysate medium, SGBC, RCBC and PLBC produced more ABE (about 18.5 g/L) than the control (10.1 g/L). This demonstrates that biochar is an effective buffer and mineral supplement for ABE production from lignocellulosic biomass without costly detoxification process.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Hailin Zhang; Hasan K. Atiyeh; Ajay Kumar; Xiao Sun;pmid: 28950138
Biochar contains minerals and metals that can serve as nutrients for acetogens to produce ethanol via syngas fermentation. In this study, four fermentation media containing biochar from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC) were compared with standard yeast extract (YE) medium for syngas fermentation using Clostridium ragsdalei. Fermentations were performed in 250mL bottle reactors at 150rpm and 37°C with syngas containing CO:H2:CO2 (40:30:30) by volume. Results showed that media containing RCBC and PLBC improved ethanol production by 16.3% and 58.9%, respectively, compared to YE medium. C. ragsdalei consumed 69% more H2 and 40% more CO in PLBC medium compared to YE medium. However, no enhancement of ethanol production was observed in SGBC and FSBC media. The highest release of Na, K, Ca, Mg, S and P was from PLBC, which was considered to contribute in enhancement of ethanol production.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Yesuf Assen Mohammed; William Raun; Gopal Kakani; Hailin Zhang; Randy Taylor; Kefeyalew Girma Desta; Crain Jared; Jeremiah Mullock; Jake Bushong; Apurba Sutradhar; Muaid S. Ali; Michael Reinert;Abstract Improper management of cattle manure and poultry litter from confined animal farming are usually source of water pollution. However, appropriate application of these products on switchgrass ( Panicum virgatum L.) field can enhance biomass yield and promote nutrient recycling. We evaluated the effects of harvest frequency and nutrient sources on yield and quality of switchgrass for biofuel feedstock. The experiment was carried out at Perkins and Lake Carl Blackwell, Oklahoma, from 2009 to 2011 using split plot design with four replications. The main plot treatments were two harvest frequencies single (June), and twice (June and November). The subplot treatments were nutrient sources: 1) cattle manure (CM), 2) poultry litter (PL), 3) urea (nitrogen at 150 kg ha −1 ), 4) combined chemical fertilizer (nitrogen-P 2 O 5 –K 2 O) with nitrogen at 150 kg ha −1 , P 2 O 5 at 40 kg ha −1 , and K 2 O at 20 kg ha −1 , 5) inter-seeded Crimson clover ( Trifolium incarnatum L.), and 6) control. Mean biomass yield was higher (12.4 Mg ha −1 ) in 2010 than other years possibly due to optimum moisture and temperature in 2010. At Perkins in 2010, application of CM and PL increased biomass yield significantly by 30 and 23% compared with combined chemical fertilizer (12.9 Mg ha −1 ). The effect of nutrient sources on cellulose, hemicellulose and lignin content was not significant at both locations. Cumulative biomass from twice harvest was similar to single harvest except in 2011 due to dry weather after the first cut. The cellulose and lignin content were significantly higher for single harvest compared with twice harvest at both locations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Raymond L. Huhnke; Hailin Zhang; Xiao Sun; Hasan K. Atiyeh; Ralph S. Tanner;Abstract Microorganisms used in syngas fermentation require nutrients to grow and convert syngas (CO, H2 and CO2) into various products. Many of the essential nutrients can be provided by biochar. Poultry litter biochar (PLBC) contains minerals and trace metals and has a high pH buffering capacity, making it suitable as a nutrient supplement. The effects of PLBC loadings from 1 to 20 g L−1 on syngas fermentation were determined in 250 ml bottle assays. Results showed that 10 and 20 g L−1 PLBC significantly increased ethanol production compared to standard yeast extract (YE) medium. Fermentations in a 3L continuous stirred tank reactor (CSTR) with 10 g L−1 PLBC with and without 4-morpholineethanesulfonic acid (MES) showed 64% and 36% more ethanol production, respectively, than standard medium. The acetic acid accumulated at the beginning of fermentation was completely converted to ethanol in all media tested in the CSTR. These results demonstrate the feasibility of using PLBC medium without costly MES in the CSTR to enhance ethanol production from syngas for potential use at commercial scale.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: João Arthur Antonangelo; Hailin Zhang;pmid: 31586315
High concentrations of heavy metals (HM) in soils have negative impacts on plants, human health, and the environmental quality. The purpose of this study was to evaluate the effects of biochars on the bioaccessibility of Zn, Pb, and Cd in a contaminated soil in the Tar Creek area of NE Oklahoma, as well as on the growth and uptake of these elements by perennial ryegrass (Lolium perenne). Biochars were produced from switchgrass (SGB) and poultry litter (PLB) feedstocks at 700 °C and applied to the soil at 0.0, 0.5, 1.0, 2.0, and 4.0% (w/w), with three replications. Regardless of the feedstock, both soil organic carbon (SOC or OC) and pH increased as the rates of biochars increased, which significantly decreased the HM bioaccessibility (p 0.05). Both bioconcentration factor (BCF) and transfer factor decreased as the rates of biochars applied increased, especially for Pb and Cd (p < 0.01). Our results suggest it is beneficial to use biochars at Tar Creek as a soil amendment to reduce HM bioaccessibility and metal uptake by ryegrass.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-06497-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-06497-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Joshua Daniel; Chad Penn; João Antonangelo; Hailin Zhang;doi: 10.3390/su122410264
Horizontal directional drilling (HDD) is a non-invasive alternative to trenching used for the installation of many common utilities. The process involves drilling fluid used to stabilize the borehole, lubricate the bit, and float cuttings to the surface. A sustainable alternative to landfill disposal is land application. Two field studies were conducted to determine the optimum application rate of HDD residuals to both established bermudagrass and bare soil seeded with bermudagrass. Residuals were applied at six rates ranging from 0 to 112 tons solid ha−1 for both trials. Soils were sampled 7, 30, and 90 days after application. Saturated paste and Mehlich-3 extractions were performed on all samples. Grass biomass was measured at the end of the study. No significant amount of nutrients or trace metals were found in the treated soils. All concentrations were in the range of typical soils. However, total dissolved solids (TDS) and sodium absorption ratio (SAR) increased with application rate. There was no significant difference in the yields of forage harvested on the established grass plots 110 days after application. Bare plots that received 22 tons solid ha−1 had higher percent ground cover than other rates. It is ecologically safe to apply HDD residuals up to 112 tons and 90 tons solid ha−1 to established bermudagrass and bare soil, respectively.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Ralph S. Tanner; Ajay Kumar; Xiao Sun; Hailin Zhang; Hasan K. Atiyeh;pmid: 29886351
Biochar has functional groups, pH buffering capacity and cation exchange capacity (CEC) that can be beneficial in syngas fermentation. This study examined the properties of biochar made from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC), and their effects on ethanol and butanol production from syngas using Clostridium carboxidivorans. Experiments were performed in 250 mL bottle reactors with a 50 mL working volume at 37 °C fed syngas containing CO:H2:CO2 (40:30:30 by volume). Results showed that PLBC and SGBC enhanced ethanol production by 90% and 73%, respectively, and butanol production by fourfold compared to standard yeast extract medium without biochar (control). CO and H2 utilization in PLBC and SGBC media increased compared to control. PLBC had the highest pH buffering capacity, CEC and total amount of cations compared with SGBC, FSBC and RCBC, which could have contributed to its highest enhancement of ethanol and butanol production.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.05.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.05.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Xiao Sun; Christopher Chukwudi Okonkwo; Raymond L. Huhnke; Thaddeus Chukwuemeka Ezeji; +3 AuthorsXiao Sun; Christopher Chukwudi Okonkwo; Raymond L. Huhnke; Thaddeus Chukwuemeka Ezeji; Yinka Adesanya; Hasan K. Atiyeh; Hailin Zhang;pmid: 31862676
Biochar can be an inexpensive pH buffer and source of mineral and trace metal nutrients in acetone-butanol-ethanol (ABE) fermentation. This study evaluated the feasibility of replacing expensive 4-morpholineethanesulfonic acid (MES) P2 buffer and mineral nutrients with biochar made from switchgrass (SGBC), forage sorghum (FSBC), redcedar (RCBC) and poultry litter (PLBC) for ABE fermentation. Fermentations using Clostridium beijerinckii ATCC 51743 in glucose and non-detoxified switchgrass hydrolysate media were performed at 35 °C in 250 mL bottles for 72 h. Medium containing buffer and minerals without biochar was the control. Similar ABE production (about 18.0 g/L) in glucose media with SGBC, FSBC and RCBC and control was measured. However in non-detoxified switchgrass hydrolysate medium, SGBC, RCBC and PLBC produced more ABE (about 18.5 g/L) than the control (10.1 g/L). This demonstrates that biochar is an effective buffer and mineral supplement for ABE production from lignocellulosic biomass without costly detoxification process.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Hailin Zhang; Hasan K. Atiyeh; Ajay Kumar; Xiao Sun;pmid: 28950138
Biochar contains minerals and metals that can serve as nutrients for acetogens to produce ethanol via syngas fermentation. In this study, four fermentation media containing biochar from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC) were compared with standard yeast extract (YE) medium for syngas fermentation using Clostridium ragsdalei. Fermentations were performed in 250mL bottle reactors at 150rpm and 37°C with syngas containing CO:H2:CO2 (40:30:30) by volume. Results showed that media containing RCBC and PLBC improved ethanol production by 16.3% and 58.9%, respectively, compared to YE medium. C. ragsdalei consumed 69% more H2 and 40% more CO in PLBC medium compared to YE medium. However, no enhancement of ethanol production was observed in SGBC and FSBC media. The highest release of Na, K, Ca, Mg, S and P was from PLBC, which was considered to contribute in enhancement of ethanol production.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Yesuf Assen Mohammed; William Raun; Gopal Kakani; Hailin Zhang; Randy Taylor; Kefeyalew Girma Desta; Crain Jared; Jeremiah Mullock; Jake Bushong; Apurba Sutradhar; Muaid S. Ali; Michael Reinert;Abstract Improper management of cattle manure and poultry litter from confined animal farming are usually source of water pollution. However, appropriate application of these products on switchgrass ( Panicum virgatum L.) field can enhance biomass yield and promote nutrient recycling. We evaluated the effects of harvest frequency and nutrient sources on yield and quality of switchgrass for biofuel feedstock. The experiment was carried out at Perkins and Lake Carl Blackwell, Oklahoma, from 2009 to 2011 using split plot design with four replications. The main plot treatments were two harvest frequencies single (June), and twice (June and November). The subplot treatments were nutrient sources: 1) cattle manure (CM), 2) poultry litter (PL), 3) urea (nitrogen at 150 kg ha −1 ), 4) combined chemical fertilizer (nitrogen-P 2 O 5 –K 2 O) with nitrogen at 150 kg ha −1 , P 2 O 5 at 40 kg ha −1 , and K 2 O at 20 kg ha −1 , 5) inter-seeded Crimson clover ( Trifolium incarnatum L.), and 6) control. Mean biomass yield was higher (12.4 Mg ha −1 ) in 2010 than other years possibly due to optimum moisture and temperature in 2010. At Perkins in 2010, application of CM and PL increased biomass yield significantly by 30 and 23% compared with combined chemical fertilizer (12.9 Mg ha −1 ). The effect of nutrient sources on cellulose, hemicellulose and lignin content was not significant at both locations. Cumulative biomass from twice harvest was similar to single harvest except in 2011 due to dry weather after the first cut. The cellulose and lignin content were significantly higher for single harvest compared with twice harvest at both locations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Raymond L. Huhnke; Hailin Zhang; Xiao Sun; Hasan K. Atiyeh; Ralph S. Tanner;Abstract Microorganisms used in syngas fermentation require nutrients to grow and convert syngas (CO, H2 and CO2) into various products. Many of the essential nutrients can be provided by biochar. Poultry litter biochar (PLBC) contains minerals and trace metals and has a high pH buffering capacity, making it suitable as a nutrient supplement. The effects of PLBC loadings from 1 to 20 g L−1 on syngas fermentation were determined in 250 ml bottle assays. Results showed that 10 and 20 g L−1 PLBC significantly increased ethanol production compared to standard yeast extract (YE) medium. Fermentations in a 3L continuous stirred tank reactor (CSTR) with 10 g L−1 PLBC with and without 4-morpholineethanesulfonic acid (MES) showed 64% and 36% more ethanol production, respectively, than standard medium. The acetic acid accumulated at the beginning of fermentation was completely converted to ethanol in all media tested in the CSTR. These results demonstrate the feasibility of using PLBC medium without costly MES in the CSTR to enhance ethanol production from syngas for potential use at commercial scale.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: João Arthur Antonangelo; Hailin Zhang;pmid: 31586315
High concentrations of heavy metals (HM) in soils have negative impacts on plants, human health, and the environmental quality. The purpose of this study was to evaluate the effects of biochars on the bioaccessibility of Zn, Pb, and Cd in a contaminated soil in the Tar Creek area of NE Oklahoma, as well as on the growth and uptake of these elements by perennial ryegrass (Lolium perenne). Biochars were produced from switchgrass (SGB) and poultry litter (PLB) feedstocks at 700 °C and applied to the soil at 0.0, 0.5, 1.0, 2.0, and 4.0% (w/w), with three replications. Regardless of the feedstock, both soil organic carbon (SOC or OC) and pH increased as the rates of biochars increased, which significantly decreased the HM bioaccessibility (p 0.05). Both bioconcentration factor (BCF) and transfer factor decreased as the rates of biochars applied increased, especially for Pb and Cd (p < 0.01). Our results suggest it is beneficial to use biochars at Tar Creek as a soil amendment to reduce HM bioaccessibility and metal uptake by ryegrass.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-06497-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-06497-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu