- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Germany, Denmark, France, Sweden, China (People's Republic of), China (People's Republic of), China (People's Republic of), Germany, FinlandPublisher:Wiley Funded by:NSERC, AKA | When ancient meets modern..., NSF | Collaborative Research: U... +18 projectsNSERC ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| METHANE AT THE ZERO CURTAIN ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| INTAROS ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH) ,EC| PAGE21 ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Atmosphere and Climate Competence Center (ACCC)Edward A. G. Schuur; Järvi Järveoja; S. Potter; Stef Bokhorst; Marguerite Mauritz; Mats Nilsson; Steven F. Oberbauer; Elyn Humphreys; M. Goeckede; Pertti J. Martikainen; John Kochendorfer; Jinshu Chi; Juha Aalto; Juha Aalto; Jennifer D. Watts; Torben R. Christensen; Matthias Peichl; Oliver Sonnentag; Vincent L. St. Louis; Craig A. Emmerton; Miska Luoto; David Holl; Eugénie S. Euskirchen; Torbern Tagesson; Torbern Tagesson; Sang Jong Park; Gerardo Celis; Margaret S. Torn; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Maija E. Marushchak; Maija E. Marushchak; Namyi Chae; Walter C. Oechel; Walter C. Oechel; Masahito Ueyama; Peter M. Lafleur; Christina Biasi; Bo Elberling; Brendan M. Rogers; Han Dolman; Ivan Mammarella; Aleksi Lehtonen; Claire C. Treat; Min Jung Kwon; Carolina Voigt; Carolina Voigt; Hideki Kobayashi; Rafael Poyatos; Susan M. Natali; Hiroki Iwata; Donatella Zona; Donatella Zona; Anna-Maria Virkkala; Efrén López-Blanco; Torsten Sachs;doi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 Germany, France, Switzerland, United Kingdom, DenmarkPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C..., RCN | Winter-proofing land surf..., NSF | Automated, High Resolutio... +7 projectsNSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| Automated, High Resolution Terrain Generation for XSEDE ,EC| CHARTER ,RCN| Upscaling hotspots - understanding the variability of critical land-atmosphere fluxes to strengthen climate models ,NSF| The Polar Geospatial Information Center: Joint Support ,NSF| Collaborative Research: Tracking Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,SNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| FutureWeb ,SNSF| Arctic Tundra Surface Energy Budget - assessing the status and informing predictionsJacqueline Oehri; Gabriela Schaepman-Strub; Jin-Soo Kim; Raleigh Grysko; Heather Kropp; Inge Grünberg; Vitalii Zemlianskii; Oliver Sonnentag; Eugénie S. Euskirchen; Merin Reji Chacko; Giovanni Muscari; Peter D. Blanken; Joshua F. Dean; Alcide di Sarra; Richard J. Harding; Ireneusz Sobota; Lars Kutzbach; Elena Plekhanova; Aku Riihelä; Julia Boike; Nathaniel B. Miller; Jason Beringer; Efrén López-Blanco; Paul C. Stoy; Ryan C. Sullivan; Marek Kejna; Frans-Jan W. Parmentier; John A. Gamon; Mikhail Mastepanov; Christian Wille; Marcin Jackowicz-Korczynski; Dirk N. Karger; William L. Quinton; Jaakko Putkonen; Dirk van As; Torben R. Christensen; Maria Z. Hakuba; Robert S. Stone; Stefan Metzger; Baptiste Vandecrux; Gerald V. Frost; Martin Wild; Birger Hansen; Daniela Meloni; Florent Domine; Mariska te Beest; Torsten Sachs; Aram Kalhori; Adrian V. Rocha; Scott N. Williamson; Sara Morris; Adam L. Atchley; Richard Essery; Benjamin R. K. Runkle; David Holl; Laura D. Riihimaki; Hiroki Iwata; Edward A. G. Schuur; Christopher J. Cox; Andrey A. Grachev; Joseph P. McFadden; Robert S. Fausto; Mathias Göckede; Masahito Ueyama; Norbert Pirk; Gijs de Boer; M. Syndonia Bret-Harte; Matti Leppäranta; Konrad Steffen; Thomas Friborg; Atsumu Ohmura; Colin W. Edgar; Johan Olofsson; Scott D. Chambers;AbstractDespite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 3 Powered bymore_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United States, Germany, United StatesPublisher:Wiley Funded by:UKRI | Methane Production in the...UKRI| Methane Production in the Arctic: Under-recognized Cold Season and Upland Tundra - Arctic Methane Sources-UAMSDonatella Zona; Peter M. Lafleur; Koen Hufkens; Beniamino Gioli; Barbara Bailey; George Burba; Eugénie S. Euskirchen; Jennifer D. Watts; Kyle A. Arndt; Mary Farina; John S. Kimball; Martin Heimann; Mathias Göckede; Martijn Pallandt; Torben R. Christensen; Mikhail Mastepanov; Efrén López‐Blanco; Albertus J. Dolman; Roisin Commane; Charles E. Miller; Josh Hashemi; Lars Kutzbach; David Holl; Julia Boike; Christian Wille; Torsten Sachs; Aram Kalhori; Elyn R. Humphreys; Oliver Sonnentag; Gesa Meyer; Gabriel H. Gosselin; Philip Marsh; Walter C. Oechel;AbstractLong‐term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high‐latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long‐term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site‐years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/233637Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/233637Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, Germany, Italy, United StatesPublisher:Research Square Platform LLC Funded by:NSF | Methane loss from Arctic:..., NSF | METHANE AT THE ZERO CURTA..., UKRI | Methane Production in the... +1 projectsNSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| METHANE AT THE ZERO CURTAIN ,UKRI| Methane Production in the Arctic: Under-recognized Cold Season and Upland Tundra - Arctic Methane Sources-UAMS ,EC| INTAROSZona, Donatella; Lafleur, Peter M.; Hufkens, Koen; Bailey, Barbara; Gioli, Beniamino; Burba, George; Goodrich, Jordan P.; Liljedahl, Anna K.; Euskirchen, Eugénie S.; Watts, Jennifer D.; Farina, Mary; Kimball, John S.; Heimann, Martin; Göckede, Mathias; Pallandt, Martijn; Christensen, Torben R.; Mastepanov, Mikhail; López-Blanco, Efrén; Jackowicz-Korczynski, Marcin; Dolman, Albertus J.; Marchesini, Luca Belelli; Commane, Roisin; Wofsy, Steven C.; Miller, Charles E.; Lipson, David A.; Hashemi, Josh; Arndt, Kyle A.; Kutzbach, Lars; Holl, David; Boike, Julia; Wille, Christian; Sachs, Torsten; Kalhori, Aram; Song, Xia; Xu, Xiaofeng; Humphreys, Elyn R.; Koven, Charles D.; Sonnentag, Oliver; Meyer, Gesa; Gosselin, Gabriel H.; Marsh, Philip; Oechel, Walter C.;Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic.Here we found that earlier snowmelt was associated with more net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence for a water stress that affected GPP in the peak and late growing season. Our results suggest that climate change and the associated increased length in the growing season might not benefit these northern tundra ecosystems if they are not able to continue sequestering CO2 later in the season.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74194Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-959226/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 3 Powered bymore_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74194Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-959226/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Germany, Denmark, France, Sweden, China (People's Republic of), China (People's Republic of), China (People's Republic of), Germany, FinlandPublisher:Wiley Funded by:NSERC, AKA | When ancient meets modern..., NSF | Collaborative Research: U... +18 projectsNSERC ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| METHANE AT THE ZERO CURTAIN ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| INTAROS ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH) ,EC| PAGE21 ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Atmosphere and Climate Competence Center (ACCC)Edward A. G. Schuur; Järvi Järveoja; S. Potter; Stef Bokhorst; Marguerite Mauritz; Mats Nilsson; Steven F. Oberbauer; Elyn Humphreys; M. Goeckede; Pertti J. Martikainen; John Kochendorfer; Jinshu Chi; Juha Aalto; Juha Aalto; Jennifer D. Watts; Torben R. Christensen; Matthias Peichl; Oliver Sonnentag; Vincent L. St. Louis; Craig A. Emmerton; Miska Luoto; David Holl; Eugénie S. Euskirchen; Torbern Tagesson; Torbern Tagesson; Sang Jong Park; Gerardo Celis; Margaret S. Torn; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Maija E. Marushchak; Maija E. Marushchak; Namyi Chae; Walter C. Oechel; Walter C. Oechel; Masahito Ueyama; Peter M. Lafleur; Christina Biasi; Bo Elberling; Brendan M. Rogers; Han Dolman; Ivan Mammarella; Aleksi Lehtonen; Claire C. Treat; Min Jung Kwon; Carolina Voigt; Carolina Voigt; Hideki Kobayashi; Rafael Poyatos; Susan M. Natali; Hiroki Iwata; Donatella Zona; Donatella Zona; Anna-Maria Virkkala; Efrén López-Blanco; Torsten Sachs;doi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 Germany, France, Switzerland, United Kingdom, DenmarkPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C..., RCN | Winter-proofing land surf..., NSF | Automated, High Resolutio... +7 projectsNSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| Automated, High Resolution Terrain Generation for XSEDE ,EC| CHARTER ,RCN| Upscaling hotspots - understanding the variability of critical land-atmosphere fluxes to strengthen climate models ,NSF| The Polar Geospatial Information Center: Joint Support ,NSF| Collaborative Research: Tracking Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,SNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| FutureWeb ,SNSF| Arctic Tundra Surface Energy Budget - assessing the status and informing predictionsJacqueline Oehri; Gabriela Schaepman-Strub; Jin-Soo Kim; Raleigh Grysko; Heather Kropp; Inge Grünberg; Vitalii Zemlianskii; Oliver Sonnentag; Eugénie S. Euskirchen; Merin Reji Chacko; Giovanni Muscari; Peter D. Blanken; Joshua F. Dean; Alcide di Sarra; Richard J. Harding; Ireneusz Sobota; Lars Kutzbach; Elena Plekhanova; Aku Riihelä; Julia Boike; Nathaniel B. Miller; Jason Beringer; Efrén López-Blanco; Paul C. Stoy; Ryan C. Sullivan; Marek Kejna; Frans-Jan W. Parmentier; John A. Gamon; Mikhail Mastepanov; Christian Wille; Marcin Jackowicz-Korczynski; Dirk N. Karger; William L. Quinton; Jaakko Putkonen; Dirk van As; Torben R. Christensen; Maria Z. Hakuba; Robert S. Stone; Stefan Metzger; Baptiste Vandecrux; Gerald V. Frost; Martin Wild; Birger Hansen; Daniela Meloni; Florent Domine; Mariska te Beest; Torsten Sachs; Aram Kalhori; Adrian V. Rocha; Scott N. Williamson; Sara Morris; Adam L. Atchley; Richard Essery; Benjamin R. K. Runkle; David Holl; Laura D. Riihimaki; Hiroki Iwata; Edward A. G. Schuur; Christopher J. Cox; Andrey A. Grachev; Joseph P. McFadden; Robert S. Fausto; Mathias Göckede; Masahito Ueyama; Norbert Pirk; Gijs de Boer; M. Syndonia Bret-Harte; Matti Leppäranta; Konrad Steffen; Thomas Friborg; Atsumu Ohmura; Colin W. Edgar; Johan Olofsson; Scott D. Chambers;AbstractDespite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 3 Powered bymore_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United States, Germany, United StatesPublisher:Wiley Funded by:UKRI | Methane Production in the...UKRI| Methane Production in the Arctic: Under-recognized Cold Season and Upland Tundra - Arctic Methane Sources-UAMSDonatella Zona; Peter M. Lafleur; Koen Hufkens; Beniamino Gioli; Barbara Bailey; George Burba; Eugénie S. Euskirchen; Jennifer D. Watts; Kyle A. Arndt; Mary Farina; John S. Kimball; Martin Heimann; Mathias Göckede; Martijn Pallandt; Torben R. Christensen; Mikhail Mastepanov; Efrén López‐Blanco; Albertus J. Dolman; Roisin Commane; Charles E. Miller; Josh Hashemi; Lars Kutzbach; David Holl; Julia Boike; Christian Wille; Torsten Sachs; Aram Kalhori; Elyn R. Humphreys; Oliver Sonnentag; Gesa Meyer; Gabriel H. Gosselin; Philip Marsh; Walter C. Oechel;AbstractLong‐term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high‐latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long‐term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site‐years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/233637Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/233637Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, Germany, Italy, United StatesPublisher:Research Square Platform LLC Funded by:NSF | Methane loss from Arctic:..., NSF | METHANE AT THE ZERO CURTA..., UKRI | Methane Production in the... +1 projectsNSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| METHANE AT THE ZERO CURTAIN ,UKRI| Methane Production in the Arctic: Under-recognized Cold Season and Upland Tundra - Arctic Methane Sources-UAMS ,EC| INTAROSZona, Donatella; Lafleur, Peter M.; Hufkens, Koen; Bailey, Barbara; Gioli, Beniamino; Burba, George; Goodrich, Jordan P.; Liljedahl, Anna K.; Euskirchen, Eugénie S.; Watts, Jennifer D.; Farina, Mary; Kimball, John S.; Heimann, Martin; Göckede, Mathias; Pallandt, Martijn; Christensen, Torben R.; Mastepanov, Mikhail; López-Blanco, Efrén; Jackowicz-Korczynski, Marcin; Dolman, Albertus J.; Marchesini, Luca Belelli; Commane, Roisin; Wofsy, Steven C.; Miller, Charles E.; Lipson, David A.; Hashemi, Josh; Arndt, Kyle A.; Kutzbach, Lars; Holl, David; Boike, Julia; Wille, Christian; Sachs, Torsten; Kalhori, Aram; Song, Xia; Xu, Xiaofeng; Humphreys, Elyn R.; Koven, Charles D.; Sonnentag, Oliver; Meyer, Gesa; Gosselin, Gabriel H.; Marsh, Philip; Oechel, Walter C.;Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic.Here we found that earlier snowmelt was associated with more net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence for a water stress that affected GPP in the peak and late growing season. Our results suggest that climate change and the associated increased length in the growing season might not benefit these northern tundra ecosystems if they are not able to continue sequestering CO2 later in the season.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74194Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-959226/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 3 Powered bymore_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74194Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-959226/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu