Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • natural sciences

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yitong Liu; Yitong Liu; Wendong Wei; Zhi Li; +5 Authors

    Abstract It’s anticipated that future expansion of energy industry in China will inevitably exert enormous pressure on water use both at home and abroad, due to the globalized energy supply chains. Therefore, this study aims to systematically evaluate the global water use embodied in China’s energy supply chains (i.e., energy supply, demand and international trade) in a unified framework by using a global multi-regional input-output analysis. The results reveal that China's direct water withdrawal by energy sectors (i.e., coal, oil, gas, petroleum and electricity) amounts to 117 billion m3 in 2011, of which foreign demand mainly from USA, EU28 and Japan drives one quarter. From energy demand side, only water roughly equivalent to one fifth of direct water withdrawal of energy sectors is embodied in China’s final demand of energy sectors, indicating that energy sectors transfer large amounts of water embodied in intermediate use to downstream sectors. Regarding water use embodied in China's energy trade, China mainly imports from XSU (Rest of Former Soviet Union), Russia and Korea, and exports to Vietnam, Singapore and XEA (Rest of East Asia). Although much of the discussion around China’s energy-water nexus is focused on local perspective, our findings highlight the importance to consider the impacts of China’s globalized energy supply chains on worldwide water use when formulating policy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yitong Liu; Yitong Liu; Wendong Wei; Zhi Li; +5 Authors

    Abstract It’s anticipated that future expansion of energy industry in China will inevitably exert enormous pressure on water use both at home and abroad, due to the globalized energy supply chains. Therefore, this study aims to systematically evaluate the global water use embodied in China’s energy supply chains (i.e., energy supply, demand and international trade) in a unified framework by using a global multi-regional input-output analysis. The results reveal that China's direct water withdrawal by energy sectors (i.e., coal, oil, gas, petroleum and electricity) amounts to 117 billion m3 in 2011, of which foreign demand mainly from USA, EU28 and Japan drives one quarter. From energy demand side, only water roughly equivalent to one fifth of direct water withdrawal of energy sectors is embodied in China’s final demand of energy sectors, indicating that energy sectors transfer large amounts of water embodied in intermediate use to downstream sectors. Regarding water use embodied in China's energy trade, China mainly imports from XSU (Rest of Former Soviet Union), Russia and Korea, and exports to Vietnam, Singapore and XEA (Rest of East Asia). Although much of the discussion around China’s energy-water nexus is focused on local perspective, our findings highlight the importance to consider the impacts of China’s globalized energy supply chains on worldwide water use when formulating policy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Guoqian Chen;
    Guoqian Chen
    ORCID
    Harvested from ORCID Public Data File

    Guoqian Chen in OpenAIRE
    Guoqian Chen; Tasawar Hayat; Tasawar Hayat; +2 Authors

    Abstract Fossil energy burning is one of the most important sources of atmospheric mercury emissions, which poses great threats to both environment and human health. Urban regions are dominant energy consumers; however, the information on the resultant mercury emissions in urban regions has been lacking. Therefore, in light of environmentally extended input–output analysis, this study used Beijing as a case to investigate embodied (direct plus indirect) mercury emissions induced by fossil energy consumption in urban regions. The results show that embodied mercury emissions caused by Beijing׳s fossil energy consumption amounted to 5.86 tonnes, which is over 1.5 times the direct emissions, indicating that the conventional direct emission accounting method will lead to significant emission leakage. Coal combustion takes the major responsibility for energy-related mercury emissions. As a net importer of embodied mercury emissions, Beijing avoided a considerable amount of mercury emissions. Sectors like construction which play key role in embodied mercury emissions are also identified in this study. To comprehensively reduce mercury emissions from energy consumption the Beijing government should devote efforts to develop clean coal technology and high efficiency mercury removal devices, shift investment from infrastructure construction to tertiary industries and optimize green consumption among the residents, especially the urban residents. The method and findings may be useful for compilation of overall urban mercury emissions inventory as well as have important policy implications for global cities to control mercury emissions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    67
    citations67
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Guoqian Chen;
    Guoqian Chen
    ORCID
    Harvested from ORCID Public Data File

    Guoqian Chen in OpenAIRE
    Guoqian Chen; Tasawar Hayat; Tasawar Hayat; +2 Authors

    Abstract Fossil energy burning is one of the most important sources of atmospheric mercury emissions, which poses great threats to both environment and human health. Urban regions are dominant energy consumers; however, the information on the resultant mercury emissions in urban regions has been lacking. Therefore, in light of environmentally extended input–output analysis, this study used Beijing as a case to investigate embodied (direct plus indirect) mercury emissions induced by fossil energy consumption in urban regions. The results show that embodied mercury emissions caused by Beijing׳s fossil energy consumption amounted to 5.86 tonnes, which is over 1.5 times the direct emissions, indicating that the conventional direct emission accounting method will lead to significant emission leakage. Coal combustion takes the major responsibility for energy-related mercury emissions. As a net importer of embodied mercury emissions, Beijing avoided a considerable amount of mercury emissions. Sectors like construction which play key role in embodied mercury emissions are also identified in this study. To comprehensively reduce mercury emissions from energy consumption the Beijing government should devote efforts to develop clean coal technology and high efficiency mercury removal devices, shift investment from infrastructure construction to tertiary industries and optimize green consumption among the residents, especially the urban residents. The method and findings may be useful for compilation of overall urban mercury emissions inventory as well as have important policy implications for global cities to control mercury emissions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    67
    citations67
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph