- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Yitong Liu; Yitong Liu; Wendong Wei; Zhi Li; Ling Shao;Guoqian Chen;
Weizhong Jiang; Weizhong Jiang;Guoqian Chen
Guoqian Chen in OpenAIREBin Chen;
Bin Chen
Bin Chen in OpenAIREAbstract It’s anticipated that future expansion of energy industry in China will inevitably exert enormous pressure on water use both at home and abroad, due to the globalized energy supply chains. Therefore, this study aims to systematically evaluate the global water use embodied in China’s energy supply chains (i.e., energy supply, demand and international trade) in a unified framework by using a global multi-regional input-output analysis. The results reveal that China's direct water withdrawal by energy sectors (i.e., coal, oil, gas, petroleum and electricity) amounts to 117 billion m3 in 2011, of which foreign demand mainly from USA, EU28 and Japan drives one quarter. From energy demand side, only water roughly equivalent to one fifth of direct water withdrawal of energy sectors is embodied in China’s final demand of energy sectors, indicating that energy sectors transfer large amounts of water embodied in intermediate use to downstream sectors. Regarding water use embodied in China's energy trade, China mainly imports from XSU (Rest of Former Soviet Union), Russia and Korea, and exports to Vietnam, Singapore and XEA (Rest of East Asia). Although much of the discussion around China’s energy-water nexus is focused on local perspective, our findings highlight the importance to consider the impacts of China’s globalized energy supply chains on worldwide water use when formulating policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Yitong Liu; Yitong Liu; Wendong Wei; Zhi Li; Ling Shao;Guoqian Chen;
Weizhong Jiang; Weizhong Jiang;Guoqian Chen
Guoqian Chen in OpenAIREBin Chen;
Bin Chen
Bin Chen in OpenAIREAbstract It’s anticipated that future expansion of energy industry in China will inevitably exert enormous pressure on water use both at home and abroad, due to the globalized energy supply chains. Therefore, this study aims to systematically evaluate the global water use embodied in China’s energy supply chains (i.e., energy supply, demand and international trade) in a unified framework by using a global multi-regional input-output analysis. The results reveal that China's direct water withdrawal by energy sectors (i.e., coal, oil, gas, petroleum and electricity) amounts to 117 billion m3 in 2011, of which foreign demand mainly from USA, EU28 and Japan drives one quarter. From energy demand side, only water roughly equivalent to one fifth of direct water withdrawal of energy sectors is embodied in China’s final demand of energy sectors, indicating that energy sectors transfer large amounts of water embodied in intermediate use to downstream sectors. Regarding water use embodied in China's energy trade, China mainly imports from XSU (Rest of Former Soviet Union), Russia and Korea, and exports to Vietnam, Singapore and XEA (Rest of East Asia). Although much of the discussion around China’s energy-water nexus is focused on local perspective, our findings highlight the importance to consider the impacts of China’s globalized energy supply chains on worldwide water use when formulating policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Guoqian Chen;
Guoqian Chen; Tasawar Hayat; Tasawar Hayat; +2 AuthorsGuoqian Chen
Guoqian Chen in OpenAIREGuoqian Chen;
Guoqian Chen; Tasawar Hayat; Tasawar Hayat;Guoqian Chen
Guoqian Chen in OpenAIREJiashuo Li;
A. Alsaedi;Jiashuo Li
Jiashuo Li in OpenAIREAbstract Fossil energy burning is one of the most important sources of atmospheric mercury emissions, which poses great threats to both environment and human health. Urban regions are dominant energy consumers; however, the information on the resultant mercury emissions in urban regions has been lacking. Therefore, in light of environmentally extended input–output analysis, this study used Beijing as a case to investigate embodied (direct plus indirect) mercury emissions induced by fossil energy consumption in urban regions. The results show that embodied mercury emissions caused by Beijing׳s fossil energy consumption amounted to 5.86 tonnes, which is over 1.5 times the direct emissions, indicating that the conventional direct emission accounting method will lead to significant emission leakage. Coal combustion takes the major responsibility for energy-related mercury emissions. As a net importer of embodied mercury emissions, Beijing avoided a considerable amount of mercury emissions. Sectors like construction which play key role in embodied mercury emissions are also identified in this study. To comprehensively reduce mercury emissions from energy consumption the Beijing government should devote efforts to develop clean coal technology and high efficiency mercury removal devices, shift investment from infrastructure construction to tertiary industries and optimize green consumption among the residents, especially the urban residents. The method and findings may be useful for compilation of overall urban mercury emissions inventory as well as have important policy implications for global cities to control mercury emissions.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Guoqian Chen;
Guoqian Chen; Tasawar Hayat; Tasawar Hayat; +2 AuthorsGuoqian Chen
Guoqian Chen in OpenAIREGuoqian Chen;
Guoqian Chen; Tasawar Hayat; Tasawar Hayat;Guoqian Chen
Guoqian Chen in OpenAIREJiashuo Li;
A. Alsaedi;Jiashuo Li
Jiashuo Li in OpenAIREAbstract Fossil energy burning is one of the most important sources of atmospheric mercury emissions, which poses great threats to both environment and human health. Urban regions are dominant energy consumers; however, the information on the resultant mercury emissions in urban regions has been lacking. Therefore, in light of environmentally extended input–output analysis, this study used Beijing as a case to investigate embodied (direct plus indirect) mercury emissions induced by fossil energy consumption in urban regions. The results show that embodied mercury emissions caused by Beijing׳s fossil energy consumption amounted to 5.86 tonnes, which is over 1.5 times the direct emissions, indicating that the conventional direct emission accounting method will lead to significant emission leakage. Coal combustion takes the major responsibility for energy-related mercury emissions. As a net importer of embodied mercury emissions, Beijing avoided a considerable amount of mercury emissions. Sectors like construction which play key role in embodied mercury emissions are also identified in this study. To comprehensively reduce mercury emissions from energy consumption the Beijing government should devote efforts to develop clean coal technology and high efficiency mercury removal devices, shift investment from infrastructure construction to tertiary industries and optimize green consumption among the residents, especially the urban residents. The method and findings may be useful for compilation of overall urban mercury emissions inventory as well as have important policy implications for global cities to control mercury emissions.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.08.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu