- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- Embargo
- natural sciences
- 14. Life underwater
- Energy Research
- Closed Access
- Open Source
- Embargo
- natural sciences
- 14. Life underwater
description Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Elsevier BV Authors: David C. White; Bruce H. Baird;pmid: 11540899
Extractible phospholipid fatty acids of abyssal sediment cores from three stations in the Venezuela Basin, transects between them, and a station in the Puerto Rico Trench were analyzed to determine microbial biomass and community composition. Results were compared to abyssal sediments from an area of high-energy boundary currents in the North Atlantic, and estuarine sediments from Apalachee Bay, Florida. Venezuela Basin and Puerto Rico Trench sediments were characterize by low microbial biomass, measured as phospholipid palmitic acid. Venezuela Basin sediments of three different sedimentary regimes showed a remarkably similar microbial community structure, as characterized by fatty acid profiles. Prokaryotic organisms dominated the microbial community, and fatty acids believed to be signatures of anaerobic organisms were present in greater proportions in Venezuela Basin and Puerto Rico Trench sediments than in either the North Atlantic abyssal sediments or shallow-water estuarine sediments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0025-3227(85)90013-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0025-3227(85)90013-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, Australia, United KingdomPublisher:Wiley Authors:McClanahan, T.R.;
McClanahan, T.R.
McClanahan, T.R. in OpenAIREGraham, N.A.J.;
Graham, N.A.J.
Graham, N.A.J. in OpenAIREMacNeil, M.A.;
MacNeil, M.A.
MacNeil, M.A. in OpenAIRECinner, J.E.;
Cinner, J.E.
Cinner, J.E. in OpenAIREdoi: 10.1111/cobi.12430
pmid: 25494592
AbstractThe failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small‐scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem‐based management approaches. However, ecosystem‐based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life‐history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade‐offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem‐based fisheries management targets that can be easily applied even where research capacity and information is limited. Of particular value, is our finding that current management tools may be used to reach key ecosystem‐based management targets, enabling ecosystem‐based management in many socioeconomic contexts.
Conservation Biology arrow_drop_down Conservation BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 83 citations 83 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Conservation BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Wiley Authors:Tookes, Jennifer Sweeney;
Bartlett, Peggy; Yandle, Tracy;Tookes, Jennifer Sweeney
Tookes, Jennifer Sweeney in OpenAIREdoi: 10.1111/cuag.12106
AbstractGrowing demand for local, sustainable food is supporting an explosion of direct marketing throughout the United States (U.S.). Despite recent scholarship on ethics and sustainability issues in seafood, these are less commonly addressed among the consumers participating in the local food movement. This paper examines the interplay between demand for local and ethically sourced foods and the implications for seafood sustainability in the U.S. south, asking: what are Georgia consumer perceptions of local and sustainable foods, to what extent do they consider seafood in the local food movement, and how can Georgia fisheries fit within these understandings and preferences? We refashion a values‐based supply chain model to encapsulate consumers’ preferences, and propose a three‐tiered, process based model of involvement for seafood consumers. In sum, we argue that sustainable seafood deserves a more prominent place in the local food movement.
Culture Agriculture ... arrow_drop_down Culture Agriculture Food and EnvironmentArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGeorgia Southern University: Digital Commons@Georgia SouthernArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cuag.12106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Culture Agriculture ... arrow_drop_down Culture Agriculture Food and EnvironmentArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGeorgia Southern University: Digital Commons@Georgia SouthernArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cuag.12106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2021Publisher:SPIE Funded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: G...NSF| Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags ,NSF| Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tagsAuthors: Hyun Jun Jung;Muhammad R. Hajj;
Muhammad R. Hajj
Muhammad R. Hajj in OpenAIREJianuo Huang;
Lei Zuo; +6 AuthorsJianuo Huang
Jianuo Huang in OpenAIREHyun Jun Jung;Muhammad R. Hajj;
Muhammad R. Hajj
Muhammad R. Hajj in OpenAIREJianuo Huang;
Lei Zuo; Lei Zuo;Jianuo Huang
Jianuo Huang in OpenAIREMingyi Liu;
Jiajun Zhang;Mingyi Liu
Mingyi Liu in OpenAIREZhiqun Daniel Deng;
Zhiqun Daniel Deng;Zhiqun Daniel Deng
Zhiqun Daniel Deng in OpenAIREFeng Qian;
Feng Qian
Feng Qian in OpenAIREThis paper presents the concept design, preliminary experimental validation, and performance evaluation of a novel bio-inspired bi-stable piezoelectric energy harvester for self-powered fish telemetry tags. The self-powered fish tag is designed to externally deploy on fish (dorsal fin) to track and monitor fish habitats, population, and underwater environment, meanwhile, harvests energy from fish motion and surrounding fluid flow for a sustainable power supply. Inspired by the rapid shape transition of the Venus flytrap, a bi-stable piezoelectric energy harvester is developed to generate electricity from broadband excitation of fish maneuvering and fluid. A bluff body is integrated to the free end of the bistable piezoelectric energy harvester to enhance the structure-fluid interaction for the large-amplitude snap-through vibrations and higher voltage output. Controlled laboratory experiments are conducted in a water tank on the bio-inspired bi-stable piezoelectric energy harvester using a servo motor system to simulate fish swing motion at various conditions to evaluate the power generation performance. The preliminary underwater experimental results demonstrated that the proposed bio-inspired bi-stable piezoelectric effectively converters fish swing motions into electricity. The average power output of 1.5 mW was achieved at the swing angle of 30° and frequency of 1.6 Hz.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.2582609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.2582609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: Edward T. Sherwood; Holly Greening;pmid: 24122098
The Tampa Bay estuary is a unique and valued ecosystem that currently thrives between subtropical and temperate climates along Florida's west-central coast. The watershed is considered urbanized (42 % lands developed); however, a suite of critical coastal habitats still persists. Current management efforts are focused toward restoring the historic balance of these habitat types to a benchmark 1950s period. We have modeled the anticipated changes to a suite of habitats within the Tampa Bay estuary using the sea level affecting marshes model under various sea level rise (SLR) scenarios. Modeled changes to the distribution and coverage of mangrove habitats within the estuary are expected to dominate the overall proportions of future critical coastal habitats. Modeled losses in salt marsh, salt barren, and coastal freshwater wetlands by 2100 will significantly affect the progress achieved in "Restoring the Balance" of these habitat types over recent periods. Future land management and acquisition priorities within the Tampa Bay estuary should consider the impending effects of both continued urbanization within the watershed and climate change. This requires the recognition that: (1) the Tampa Bay estuary is trending towards a mangrove-dominated system; (2) the current management paradigm of "Restoring the Balance" may no longer provide realistic, attainable goals; (3) restoration that creates habitat mosaics will prove more resilient in the future; and (4) establishing subtidal and upslope "refugia" may be a future strategy in this urbanized estuary to allow sensitive habitat types (e.g., seagrass and salt barren) to persist under anticipated climate change and SLR impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00267-013-0179-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00267-013-0179-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:EC | COCONETEC| COCONETAuthors: Inigo J. Losada;Melisa Menendez;
Melisa Menendez
Melisa Menendez in OpenAIREJorge Perez;
Fernando J. Méndez;Jorge Perez
Jorge Perez in OpenAIREThe description of wave climate at a local scale is of paramount importance for offshore and coastal engineering applications. Conditions influencing wave characteristics at a specific location cannot, however, be fully understood by studying only local information. It is necessary to take into account the dynamics of the ocean surface over a large ‘upstream’ wave generation area. The goal of this work is to provide a methodology to easily characterize the area of influence of any particular ocean location worldwide. Moreover, the developed method is able to characterize the wave energy and travel time in that area. The method is based on a global scale analysis using both geographically and physically based criteria. The geographic criteria rely on the assumption that deep water waves travel along great circle paths. This limits the area of influence by neglecting energy that cannot reach a target point, as its path is blocked by land. The individual spectral partitions from a global wave reanalysis are used to reconstruct the spectral information and apply the physically based criteria. The criteria are based on the selection of the fraction of energy that travels towards the target point for each analysed grid point. The method has been tested on several locations worldwide. Results provide maps that inform about the relative importance of different oceanic areas to the local wave climate at any target point. This information cannot be inferred from local parameters and agrees with information from other approaches. The methodology may be useful in a number of applications, such as statistical downscaling, storm tracking and grid definition in numerical modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10236-014-0740-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10236-014-0740-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors:Frederick C. Yeh;
Liu Lin; Ting Zhang; Robin Green; +2 AuthorsFrederick C. Yeh
Frederick C. Yeh in OpenAIREFrederick C. Yeh;
Liu Lin; Ting Zhang; Robin Green; Frances Martin; Haitao Shi;Frederick C. Yeh
Frederick C. Yeh in OpenAIREdoi: 10.1002/ep.13643
AbstractThe South China Sea is an important oceanic habitat for endangered sea turtles, which are facing anthropogenic pressures from the illegal wildlife trade, fisheries by‐catch, debris pollution, habitat loss, and climate change. Compounding these threats are international disputes over territorial claims in the South China Sea, exerting a general disinclination toward regional collaborations to solve environmental issues. Since sea turtles are migratory animals that move through aquatic and terrestrial habitats, feeding in waters, and nesting on beaches under the jurisdiction of multiple countries, the species is an ideal ambassador to raise public support for international collaborations. Transnational communications to coordinate conservation efforts across borders provide a positive agenda of cooperation to build trust, creating a politically neutral platform to facilitate opportunities for diplomacy to reset and improve foreign relations, underscoring the value of sea turtles as a flagship species to reduce international tensions and bring nations together. For this reason, the U.S.‐China EcoPartnership between Sea Turtles 911 and Hainan Normal University was formed to empower local communities to protect the ocean through sea turtle rescue, public education, and scientific research projects. Genetic research determined the geographic origins of illegally traded sea turtles, validating the uniqueness of the Paracel (Xisha) Islands rookery, and urging policymakers to establish a large‐scale sea turtle nature reserve in the South China Sea. To define boundaries of the proposed marine protected area, sea turtles were tracked with satellite telemetry delineating their migratory routes and habitats across multiple countries, underscoring the importance of international collaborations. Debris pollution survey at a major turtle nesting beach in the Paracel Islands demonstrated that pollution is negatively impacting newborn turtle hatchlings and that regional cooperation in the South China Sea should promote the reduction and cleanup of marine debris. Laparoscopic surgery was performed on sea turtles for the first time in China to assess the gender ratio of the local population, which revealed a female biased ratio, indicative of the effects of climate change. A sea turtle rescue center was jointly established in which more than 100 sea turtles were successfully rescued and released by the international and local community, including students who won national awards for their volunteer service. Implementing grassroots initiatives for sea turtle conservation have become an ideal diplomatic channel to strengthen U.S.‐China relations as several diplomats, including U.S. Ambassador Max Baucus, have engaged in people‐to‐people exchanges during public educational events. This international partnership serves as a case example in which current political disputes can be set aside to prepare future generations for the existential threat of biodiversity loss and climate change, while increasing peace, stability, and turtles in the region.
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Authors: Keyhong Park;Intae Kim;
Jung-Ok Choi; Youngju Lee; +4 AuthorsIntae Kim
Intae Kim in OpenAIREKeyhong Park;Intae Kim;
Jung-Ok Choi; Youngju Lee; Jinyoung Jung; Sun-Yong Ha; Joo-Hong Kim; Miming Zhang;Intae Kim
Intae Kim in OpenAIREdoi: 10.1039/c9em00195f
pmid: 31465050
Dimethyl sulfide (DMS) production in the northern Arctic Ocean has been considered to be minimal because of high sea ice concentration and extremely low productivity.
Environmental Scienc... arrow_drop_down Environmental Science Processes & ImpactsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9em00195f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science Processes & ImpactsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9em00195f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Authors:Hembrow, Sarah C;
Hembrow, Sarah C
Hembrow, Sarah C in OpenAIRETaffs, Kathryn H;
Atahan, Pia; Parr, Jeffrey F; +2 AuthorsTaffs, Kathryn H
Taffs, Kathryn H in OpenAIREHembrow, Sarah C;
Hembrow, Sarah C
Hembrow, Sarah C in OpenAIRETaffs, Kathryn H;
Atahan, Pia; Parr, Jeffrey F; Zawadzki, Atun; Heijnis, Henk;Taffs, Kathryn H
Taffs, Kathryn H in OpenAIREpmid: 24076501
Climate change is impacting global surface water resources, increasing the need for a deeper understanding of the interaction between climate and biological diversity. This is particularly the case in the Southern Hemisphere sub-tropics, where little information exists on the aquatic biota response to climate variations. Palaeolimnological techniques, in particular the use of diatoms, are well established and can significantly contribute to the understanding of climatic variability and the impacts that change in climate have on aquatic ecosystems. A sediment core from Lake McKenzie, Fraser Island (Australia), was used to investigate interactions between climate influences and aquatic ecosystems. This study utilises a combination of proxies including biological (diatom), geochemical and chronological techniques to investigate long-term aquatic changes within the perched-dune lake. A combination of (210)Pb and AMS (14)C dates showed that the retrieved sediment represented a history of ca. 37,000 cal.yBP. The sedimentation rate in Lake McKenzie is very low, ranging on average from 0.11 mm to 0.26 mm per year. A sediment hiatus was observed between ca. 18,300 and 14,000 cal.yBP suggesting a period of dry conditions at the site. The diatom record shows little variability over the period of record, with benthic, freshwater acidic tolerant species dominating. Relative abundance of planktonic species and geochemical results indicates a period of increased water depth and lake productivity in the early Holocene and a gradual decrease in effective precipitation throughout the Holocene. Results from this study not only support earlier work conducted on Fraser Island using pollen reconstructions but also demonstrate that diatom community diversity has been relatively consistent throughout the Holocene and late Pleistocene with only minor cyclical fluctuation evident. This record is consistent with the few other aquatic palaeoecological records from the Southern Hemisphere sub-tropics.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSouthern Cross University: epublications@SCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2013.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSouthern Cross University: epublications@SCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2013.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Inter-Research Science Center Authors: Parker, Jack; Saunders, Ben;Bennett, S.;
Bennett, S.
Bennett, S. in OpenAIREHarvey, Euan;
Harvey, Euan
Harvey, Euan in OpenAIREdoi: 10.3354/meps13666
handle: 20.500.11937/88893
Climate change is rapidly altering the distributions of species and the composition of communities that have evolved over evolutionary time scales. Quantifying changes in species distributions and abundance in response to warming is critical to understanding how these changes modify structure, function and services provided by recipient communities. Changes in size structure of warm- and cool-affiliated species is an important indicator for climate-driven species redistributions over time, and has received relatively little attention. We quantified changes in length and biomass distributions of 25 species of Labridae fishes from 112 sites spanning 2000 km across a warm-cool temperate transition zone in south Western Australia. Length and biomass data were collected in 2005-2006 and 2014-2015 using diver operated stereo-video. In the decade between sampling events, south Western Australia experienced an extreme marine heatwave followed by repeated summers of anomalously warm ocean temperatures. Biomass of tropical and subtropical species increased 10-fold and 3-fold, respectively, between 2006 and 2015, whereas temperate species biomass remained relatively stable. In 2014-2015, the abundance and biomass of tropical species (e.g. Scarus ghobban) increased in the warmest regions and established multiple size classes poleward of their recorded 2005-2006 distributions, suggesting successful overwintering and recruitment where viable populations were not recorded in 2005-2006. Large, slow-growing temperate species such as Achoerodus gouldii and Bodianus frenchii decreased in small and medium size classes in warm regions. Our findings report a substantial change in the size structure and composition of labrid assemblages over a decade of climatic variability.
Marine Ecology Progr... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Marine Ecology Progr... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu