- home
- Advanced Search
- Energy Research
- physical sciences
- Energy Research
- physical sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Hussein M. Maghrabie;Abstract The efficiency, availability, and reliability of thermal management for various engineering applications present a crucial challenge facing the designers and engineers. The rapid development and sophisticated technological advancement require innovative devices possessing high operating capacities that are launched into the prodigious growing markets in all engineering sectors. As a result of pronounced advancements, the jet impingement required to transfer high heat fluxes with a target surface becomes one of the essential priorities for researchers. The intensification of jet impingement can be achieved with different techniques such as passive self-exciting jets, active exciting jets, and hybrid exciting jets. The active methods of self-exciting jets include annular, swirling, and sweeping jets, while the active ones contain pulsed and synthetic jets. In the current study, the heat transfer characteristics and the fluid flow behavior of jet impingement with recent modifications of jets are reviewed comprehensively. As well, the critical methods of passive and active exciting jets considering the jet geometrical and operating parameters are introduced. Moreover, the physical phenomena for each technique in comparison to the conventional circular straight jet as well as the published empirical correlations as available, are studied. The present work reviews the published numerical and experimental investigations considering the different modified jets and its application with various installation geometries that provide a higher efficiency with the augmentation of heat transfer rate. The jet excitation causes topological metamorphosis of flow and hence has a remarkable effect on the intensification of heat transfer.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Hussein M. Maghrabie;Abstract The efficiency, availability, and reliability of thermal management for various engineering applications present a crucial challenge facing the designers and engineers. The rapid development and sophisticated technological advancement require innovative devices possessing high operating capacities that are launched into the prodigious growing markets in all engineering sectors. As a result of pronounced advancements, the jet impingement required to transfer high heat fluxes with a target surface becomes one of the essential priorities for researchers. The intensification of jet impingement can be achieved with different techniques such as passive self-exciting jets, active exciting jets, and hybrid exciting jets. The active methods of self-exciting jets include annular, swirling, and sweeping jets, while the active ones contain pulsed and synthetic jets. In the current study, the heat transfer characteristics and the fluid flow behavior of jet impingement with recent modifications of jets are reviewed comprehensively. As well, the critical methods of passive and active exciting jets considering the jet geometrical and operating parameters are introduced. Moreover, the physical phenomena for each technique in comparison to the conventional circular straight jet as well as the published empirical correlations as available, are studied. The present work reviews the published numerical and experimental investigations considering the different modified jets and its application with various installation geometries that provide a higher efficiency with the augmentation of heat transfer rate. The jet excitation causes topological metamorphosis of flow and hence has a remarkable effect on the intensification of heat transfer.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu