- home
- Advanced Search
- Energy Research
- physical sciences
- Energy Research
- physical sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Miguel Figueiredo; Guido Marseglia; Ana S. Moita; Miguel R. O. Panão; Ana P. C. Ribeiro; Carlo M. Medaglia; António L. N. Moreira;doi: 10.3390/en13225864
Spray impingement on smooth and heated surfaces is a highly complex thermofluid phenomenon present in several engineering applications. The combination of phase Doppler interferometry, high-speed visualization, and time-resolved infrared thermography allows characterizing the heat transfer and fluid dynamics involved. Particular emphasis is given to the use of nanofluids in sprays due to their potential to enhance the heat transfer mechanisms. The results for low nanoparticle concentrations (up to 1 wt.%) show that the surfactant added to water, required to stabilize the nanofluids and minimize particle clustering, affects the spray’s main characteristics. Namely, the surfactant decreases the liquid surface tension leading to a larger wetted area and wettability, promoting heat transfer between the surface and the liquid film. However, since lower surface tension also tends to enhance splash near the edges of the wetted area, the gold nanospheres act to lessen such disturbances due to an increase of the solutions’ viscosity, thus increasing the heat flux removed from the spray slightly. The experimental results obtained from this work demonstrate that the maximum heat convection coefficients evaluated for the nanofluids can be 9.8% to 21.9% higher than those obtained with the base fluid and 11.5% to 38.8% higher when compared with those obtained with DI water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Miguel Figueiredo; Guido Marseglia; Ana S. Moita; Miguel R. O. Panão; Ana P. C. Ribeiro; Carlo M. Medaglia; António L. N. Moreira;doi: 10.3390/en13225864
Spray impingement on smooth and heated surfaces is a highly complex thermofluid phenomenon present in several engineering applications. The combination of phase Doppler interferometry, high-speed visualization, and time-resolved infrared thermography allows characterizing the heat transfer and fluid dynamics involved. Particular emphasis is given to the use of nanofluids in sprays due to their potential to enhance the heat transfer mechanisms. The results for low nanoparticle concentrations (up to 1 wt.%) show that the surfactant added to water, required to stabilize the nanofluids and minimize particle clustering, affects the spray’s main characteristics. Namely, the surfactant decreases the liquid surface tension leading to a larger wetted area and wettability, promoting heat transfer between the surface and the liquid film. However, since lower surface tension also tends to enhance splash near the edges of the wetted area, the gold nanospheres act to lessen such disturbances due to an increase of the solutions’ viscosity, thus increasing the heat flux removed from the spray slightly. The experimental results obtained from this work demonstrate that the maximum heat convection coefficients evaluated for the nanofluids can be 9.8% to 21.9% higher than those obtained with the base fluid and 11.5% to 38.8% higher when compared with those obtained with DI water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu