- home
- Advanced Search
Filters
Clear All- Energy Research
- 2021-2025
- Restricted
- chemical sciences
- Energy Research
- 2021-2025
- Restricted
- chemical sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Authors: M.M. Almeida; A.A. Más; T.M. Silva; M.F. Montemor;Abstract High power pseudocapacitors are extremely relevant to answer specific needs in the current energy transition arena and to implement an efficient renewable energy society. However, literature shows that are still open gaps concerning improvement of their energy density at high power, conversion efficiency, cost and cycle life. Electrodes based on active transition metal compounds, and in particular metal sulphides, evidence high potential to meet these objectives. This work discusses the dependence on the synthesis route of the charge storage mechanism of manganese sulphide-based materials and relates the pseudocapacitive response of these electrodes with their polycrystalline nature. Results reveal that a manganese oxy-sulphide mixture can achieve a high specific capacitance of 231 F.g−1 at 0.5 A/g in a 0.65 V active window. These values represent a 31.5 % increase compared to pure rambergite, γ-MnS, and 436 % compared to pure hausmannite Mn3O4 prepared under the same conditions. Moreover, the results show that manganese oxy-sulphide electrodes are characterized by good charge retention (73%), and superior long term capacity retention (above 86%) after 5000 cycles, evidencing potential for high power energy storage applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 ItalyPublisher:Elsevier BV Authors: Maria Luisa Testa;In recent years, the biomass as a renewable feedstock has been gaining utmost importance in order to meet the global need for fuels and chemicals from sustainability perspectives [1,2]. Principal components of biomass are cellulosic and triglycerides derivatives. The triglyceride part is principally used to obtain biodiesel and liquid alkanes, as alternative fuels [3]. Biomass derived from the lignocellulose part is rich in carbohydrates and furan derivatives, and the presence of oxygen in their structure makes them suitable for further utilization to obtain added-value products. As concern the sustainability of the chemical processes, efforts are being made to turn them into "green" processes, working on the procedures (favorable reagent ratio, catalyst amount and green solvents) and exploiting heterogeneous catalysis. The use of solid catalyst is indeed very favorable from a sustainable point of view, due to its simple separation, regeneration and recycling of the material [4,5]. This implies a high efficiency of the catalysts accompanied by a decrease in the processing cost. This presentation will focus on different types of functionalized silica or titania based materials applied to the biomass exploitation, both to the synthesis of biodiesel and its additives and for the obtainment of added-value products such as GVL, diols or HMF. Biomass can use also for the production of new materials applied in the abatement of aqueous pollutants
CNR ExploRA arrow_drop_down Materials Today ProceedingsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2020.04.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Materials Today ProceedingsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2020.04.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Kashif Mushtaq; Kashif Mushtaq; Kashif Mushtaq; M. Madalena Alves; L. Peixoto; Adélio Mendes; Márcia S.S. Santos; Márcia S.S. Santos; Márcia S.S. Santos; Celia Dias-Ferreira;M.S.S. Santos is grateful to Portuguese Foundation for Science and Technology (FCT) for her PhD fellow (reference: SFRH/BD/104087/ 2014). Kashif Mushtaq is grateful to MIT Portugal Program for his doctoral grant (PD/BD/128041/2016) under the scope of the FCT. The authors would like to acknowledge to the FCT under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI 01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145- FEDER-000004) funded by the European Regional Development Fund (ERDF), under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the Projects: i) POCI-01-0145- FEDER-006939 (LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013), funded by the ERDF, through COMPETE2020 – Programa Operacional Competitividade e Internacionalizacao (POCI) and by nationals funds through FCT, ii) by the Project SunStorage - Harvesting and storage of solar energy”, with reference POCI-01-0145-FEDER-016387, funded by ERDF, through COMPETE 2020 –POCI), and by national funds, through FCT; (iii) Project PTDC/EQU-EQU/30510/2017 - POCI-01-0145- FEDER-030510 – Sunflow “Solar energy storage into redox flow batteries” funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) and by national funds (PIDDAC) through FCT/MCTES and iV) NORTE-01-0145- FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (Norte 2020), under the Portugal 2020 Partnership Agreement, through the ERDF. The authors are indebted with all the colleagues who assisted in the laboratory work.
Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2021Data sources: Repositório Aberto da Universidade do PortoRepositório Aberto da Universidade AbertaArticle . 2021Data sources: Repositório Aberto da Universidade AbertaJournal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 102visibility views 102 download downloads 66 Powered bymore_vert Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2021Data sources: Repositório Aberto da Universidade do PortoRepositório Aberto da Universidade AbertaArticle . 2021Data sources: Repositório Aberto da Universidade AbertaJournal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Eleana Mundaray; Alfonso Sáez; José Solla-Gullón; Vicente Montiel;Abstract The development of clean, renewable, and affordable energy sources such as wind or sun has become a necessity for a sustainable energy society. Consequently, it is highly required the development of energy storage systems capable of efficiently storing the energy generated by these intermittent sources. In recent years, hydrogen-based technologies have emerged as a way of mitigating the environmental footprint left by the fossil fuels-based ones. In this paper we report new insights into the performance of an environmentally friendly Acid-Base Electrochemical Flow Battery (ABEFB), using an electrolyte consisting of high NaCl concentration. Energy is obtained from the neutralization of two acid and alkaline solutions through hydrogen evolution and oxidation reactions. Different parameters such as the nature of the cationic membrane and the electrolyte concentration have been systematically evaluated. Under optimal conditions, this battery can provide a maximum power density of about 73.5 W m-2 at 215 A m−2, a coulombic efficiency of around 80%, and a round-trip efficiency of 52%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:EC | E2PHEST2US, EC | STAGE-STEEC| E2PHEST2US ,EC| STAGE-STED. Sciti; M. Mastellone; Elisa Sani; V. Serpente; Daniele M. Trucchi; Marco Girolami; Alessandro Bellucci;Polycrystalline lanthanum hexaboride (LaB) discs were sintered by hot pressing of commercial powders and successively polished, in order to investigate their thermionic emission capability. LaB samples presented values of work function in the range 2.55-2.61 eV. Discs with polished surface, independently from the composition and density, demonstrated to provide a Richardson constant around 45 A cm2K2. These results are promising for the use of sintered LaB discs in thermionic energy converters operating at temperatures in the 1400-1700 °C range. Moreover, since the properties of solar absorption and spectral selectivity of LaB make them appealing for the conversion of concentrated solar radiation, a modelling study to estimate the energy conversion efficiency was performed, aimed at identifying the proper engineering strategies able to make the resulting devices competitive for electrical conversion of concentrated solar radiation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceramint.2021.04.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceramint.2021.04.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SerbiaPublisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., MESTD | Ministry of Education, Sc...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of the SASA, Belgrade) ,MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy)Authors: Popović, Aleksandra S.; Gvozdenović, Milica M.; Janković, Ana; Jugović, Branimir; +1 AuthorsPopović, Aleksandra S.; Gvozdenović, Milica M.; Janković, Ana; Jugović, Branimir; Grgur, Branimir;handle: 21.15107/rcub_dais_14707
Electrochemical Energy Storage (EES) technologies are playing a significant role in the aspirations to decrease the usage of fossil fuels and move toward an environmentally conscious society. Due to the importance of EES technologies, more researchers are looking for an efficient and effective electrode material, which is the most important part of the EES system that possibly could result in much-needed advancements in the field. However, incoming researchers have a diverse backgrounds and as newcomers to the electrochemical community, they sometimes lack familiarity with the core concepts, well-established procedures, and methodologies that define the standards of the discipline. This issue's importance has been acknowledged, and various publications have been written to guide researchers in doing accurate evaluations. However, to the best of our knowledge, even though these publications demonstrate the methodologies and procedures for approaching the existing challenges none of them address the offered topic with an actual example. To address this gap, we present a step-by-step procedure for the electrochemical analysis of polypyrrole, a widely utilized conducting polymer with significant potential as an electrode material for supercapacitors and batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.synthmet.2023.117386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.synthmet.2023.117386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Lorenzo Spadaro; Alessandra Palella; Francesco Arena;Current prospective in the liquid fuels synthesis is prefiguring a greater integration of eco-friendly technologies based on the use of "non-fossil" hydrogen and CO. Therefore, a series of MO@CeO catalysts (i.e. M = Cu, Fe and Zn), at different MO-to-CeO ratio (ca. 0.2-1.5 wt./wt.), were prepared and performed in the in the CO hydrogenation reactions at 20 bar and 200-300 °C, (GHSV; 4,400NL?kg?cat h). Depending on catalyst composition, the CO conversion proceeds according to a "volcano shaped" profiles, resulting more effective at an optimal value of interfacial area (i.e. ? = 0.25). This also substantiate that the occurrence of structural-electronic synergistic effects plays a key role in the catalytic properties. The different catalytic pathway of CuZnO@CeO and CuFeZnO@CeO catalysts prove "dual-sites" and "triple-sites" mechanisms in the CO hydrogenation reactions, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cattod.2020.04.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cattod.2020.04.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Ridha Djellabi; Dominic Aboagye; Melissa Greta Galloni; Vaibhav Vilas Andhalkar; +6 AuthorsRidha Djellabi; Dominic Aboagye; Melissa Greta Galloni; Vaibhav Vilas Andhalkar; Sana Nouacer; Walid Nabgan; Sami Rtimi; Magda Constantí; Francisco Medina Cabello; Sandra Contreras;pmid: 36403911
The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Mahmoud, Mohamed; El-Kalliny, Amer S.; Squadrito, Gaetano;Photoelectrochemical water splitting is a green, sustainable technology for harnessing solar energy to generate H-2; however, the energy demand needed to drive this non-spontaneous reaction limits the technology's competitiveness. In addition, the poor efficiency of photoanodes in photoelectrochemical cells (PECs) has been one of the factors governing the overall solar conversion efficiency of PECs. Here, a novel stacking approach of n-type titanium dioxide nanotubes (TiO2 NTs) photoanodes was proposed to improve their light-harvesting and charge transfer properties. Interestingly, the stacked photoanodes exhibited a much higher photocurrent of -0.79 mA/cm2 at 1 V (vs. SHE) than single sheet TiO2 NTs photoanode (i.e., -0.07 mA/cm(2)) at the same po-tential, implying that TiO2 NTs stacking approach resulted in effective light absorbance and management and much lower charge transfer resistance across the interface of photoanode and electrolyte. In addition, a self-biased, integrated solar-microbial system was developed, in which a microbial fuel cell (MFC) fed with real animal manure wastewater was used as a power source to drive sustainable H-2 production in a photo-electrochemical cell having stacked TiO2 NTs photoanodes. Without any external bias, the integrated system, which comprises an MFC and a three-sheet TiO2 NTs photoanode-based PEC, generated a photocurrent of 0.44 mA/cm(2) with an H-2 production rate of 0.45 +/- 0.03-m(3) H-2/m(3) day under 1 sun illumination (100 mW/cm(2)), which is -1.5-1.9-fold higher than other tested systems. This study demonstrates the synergetic effect between MFCs and PECs, in which electrons recovered from wastewater biodegradation in MFCs significantly increase H-2 generation in PECs without the need for an external power source.
CNR ExploRA arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Russian FederationPublisher:Pleiades Publishing Ltd Tychinkin, I. V.; Shishlov, O. F.; Glukhikh, V. V.; Stoyanov, O. V.; Kolpakova, M. V.;Abstract: This paper considers the use of lignin during the preparation of phenol-formaldehyde resins. The effect of lignin on the properties of phenol-formaldehyde resins and materials based on them is studied. The obtained resins are characterized by differential scanning calorimetry (DSC). The results show that, in the case of increasing the concentration of lignin, the time of the polycondensation reaction, the energy of activation, and the curing time of lignin-containing resins increase. The main parameters of the lignin-containing resins correspond to GOST (State Standard) 20907–2016 except for the concentration of free formaldehyde. The obtained resins are used to obtain a foam composite material—phenolic foam. It is noted that phenolic foams based on resins containing 5–10% lignin in the composition have a higher compression strength in comparison with other samples. At a concentration of lignin in the resin of 20%, the compression strength of the ready-to-use thermal-insulation materials decreases relative to other samples, while it turns out to be impossible to obtain a foam material in the case of using a resin with 30% lignin. The results of the study make it possible to recommend the use of a small amount of lignin (5–10%) in the production of phenol-formaldehyde resins and further production of a thermal-insulation material with an increased compression strength. © 2023, Pleiades Publishing, Ltd.
Electronic archive o... arrow_drop_down Polymer Science Series DArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUral State Forest Engineering University (USFEU): Electronic ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1995421223020454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Electronic archive o... arrow_drop_down Polymer Science Series DArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUral State Forest Engineering University (USFEU): Electronic ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1995421223020454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Authors: M.M. Almeida; A.A. Más; T.M. Silva; M.F. Montemor;Abstract High power pseudocapacitors are extremely relevant to answer specific needs in the current energy transition arena and to implement an efficient renewable energy society. However, literature shows that are still open gaps concerning improvement of their energy density at high power, conversion efficiency, cost and cycle life. Electrodes based on active transition metal compounds, and in particular metal sulphides, evidence high potential to meet these objectives. This work discusses the dependence on the synthesis route of the charge storage mechanism of manganese sulphide-based materials and relates the pseudocapacitive response of these electrodes with their polycrystalline nature. Results reveal that a manganese oxy-sulphide mixture can achieve a high specific capacitance of 231 F.g−1 at 0.5 A/g in a 0.65 V active window. These values represent a 31.5 % increase compared to pure rambergite, γ-MnS, and 436 % compared to pure hausmannite Mn3O4 prepared under the same conditions. Moreover, the results show that manganese oxy-sulphide electrodes are characterized by good charge retention (73%), and superior long term capacity retention (above 86%) after 5000 cycles, evidencing potential for high power energy storage applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 ItalyPublisher:Elsevier BV Authors: Maria Luisa Testa;In recent years, the biomass as a renewable feedstock has been gaining utmost importance in order to meet the global need for fuels and chemicals from sustainability perspectives [1,2]. Principal components of biomass are cellulosic and triglycerides derivatives. The triglyceride part is principally used to obtain biodiesel and liquid alkanes, as alternative fuels [3]. Biomass derived from the lignocellulose part is rich in carbohydrates and furan derivatives, and the presence of oxygen in their structure makes them suitable for further utilization to obtain added-value products. As concern the sustainability of the chemical processes, efforts are being made to turn them into "green" processes, working on the procedures (favorable reagent ratio, catalyst amount and green solvents) and exploiting heterogeneous catalysis. The use of solid catalyst is indeed very favorable from a sustainable point of view, due to its simple separation, regeneration and recycling of the material [4,5]. This implies a high efficiency of the catalysts accompanied by a decrease in the processing cost. This presentation will focus on different types of functionalized silica or titania based materials applied to the biomass exploitation, both to the synthesis of biodiesel and its additives and for the obtainment of added-value products such as GVL, diols or HMF. Biomass can use also for the production of new materials applied in the abatement of aqueous pollutants
CNR ExploRA arrow_drop_down Materials Today ProceedingsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2020.04.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Materials Today ProceedingsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2020.04.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 PortugalPublisher:Elsevier BV Kashif Mushtaq; Kashif Mushtaq; Kashif Mushtaq; M. Madalena Alves; L. Peixoto; Adélio Mendes; Márcia S.S. Santos; Márcia S.S. Santos; Márcia S.S. Santos; Celia Dias-Ferreira;M.S.S. Santos is grateful to Portuguese Foundation for Science and Technology (FCT) for her PhD fellow (reference: SFRH/BD/104087/ 2014). Kashif Mushtaq is grateful to MIT Portugal Program for his doctoral grant (PD/BD/128041/2016) under the scope of the FCT. The authors would like to acknowledge to the FCT under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI 01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145- FEDER-000004) funded by the European Regional Development Fund (ERDF), under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the Projects: i) POCI-01-0145- FEDER-006939 (LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013), funded by the ERDF, through COMPETE2020 – Programa Operacional Competitividade e Internacionalizacao (POCI) and by nationals funds through FCT, ii) by the Project SunStorage - Harvesting and storage of solar energy”, with reference POCI-01-0145-FEDER-016387, funded by ERDF, through COMPETE 2020 –POCI), and by national funds, through FCT; (iii) Project PTDC/EQU-EQU/30510/2017 - POCI-01-0145- FEDER-030510 – Sunflow “Solar energy storage into redox flow batteries” funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) and by national funds (PIDDAC) through FCT/MCTES and iV) NORTE-01-0145- FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (Norte 2020), under the Portugal 2020 Partnership Agreement, through the ERDF. The authors are indebted with all the colleagues who assisted in the laboratory work.
Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2021Data sources: Repositório Aberto da Universidade do PortoRepositório Aberto da Universidade AbertaArticle . 2021Data sources: Repositório Aberto da Universidade AbertaJournal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 102visibility views 102 download downloads 66 Powered bymore_vert Repositório Aberto d... arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2021Data sources: Repositório Aberto da Universidade do PortoRepositório Aberto da Universidade AbertaArticle . 2021Data sources: Repositório Aberto da Universidade AbertaJournal of Energy StorageArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2021.102610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Eleana Mundaray; Alfonso Sáez; José Solla-Gullón; Vicente Montiel;Abstract The development of clean, renewable, and affordable energy sources such as wind or sun has become a necessity for a sustainable energy society. Consequently, it is highly required the development of energy storage systems capable of efficiently storing the energy generated by these intermittent sources. In recent years, hydrogen-based technologies have emerged as a way of mitigating the environmental footprint left by the fossil fuels-based ones. In this paper we report new insights into the performance of an environmentally friendly Acid-Base Electrochemical Flow Battery (ABEFB), using an electrolyte consisting of high NaCl concentration. Energy is obtained from the neutralization of two acid and alkaline solutions through hydrogen evolution and oxidation reactions. Different parameters such as the nature of the cationic membrane and the electrolyte concentration have been systematically evaluated. Under optimal conditions, this battery can provide a maximum power density of about 73.5 W m-2 at 215 A m−2, a coulombic efficiency of around 80%, and a round-trip efficiency of 52%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:EC | E2PHEST2US, EC | STAGE-STEEC| E2PHEST2US ,EC| STAGE-STED. Sciti; M. Mastellone; Elisa Sani; V. Serpente; Daniele M. Trucchi; Marco Girolami; Alessandro Bellucci;Polycrystalline lanthanum hexaboride (LaB) discs were sintered by hot pressing of commercial powders and successively polished, in order to investigate their thermionic emission capability. LaB samples presented values of work function in the range 2.55-2.61 eV. Discs with polished surface, independently from the composition and density, demonstrated to provide a Richardson constant around 45 A cm2K2. These results are promising for the use of sintered LaB discs in thermionic energy converters operating at temperatures in the 1400-1700 °C range. Moreover, since the properties of solar absorption and spectral selectivity of LaB make them appealing for the conversion of concentrated solar radiation, a modelling study to estimate the energy conversion efficiency was performed, aimed at identifying the proper engineering strategies able to make the resulting devices competitive for electrical conversion of concentrated solar radiation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceramint.2021.04.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ceramint.2021.04.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SerbiaPublisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., MESTD | Ministry of Education, Sc...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of the SASA, Belgrade) ,MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy)Authors: Popović, Aleksandra S.; Gvozdenović, Milica M.; Janković, Ana; Jugović, Branimir; +1 AuthorsPopović, Aleksandra S.; Gvozdenović, Milica M.; Janković, Ana; Jugović, Branimir; Grgur, Branimir;handle: 21.15107/rcub_dais_14707
Electrochemical Energy Storage (EES) technologies are playing a significant role in the aspirations to decrease the usage of fossil fuels and move toward an environmentally conscious society. Due to the importance of EES technologies, more researchers are looking for an efficient and effective electrode material, which is the most important part of the EES system that possibly could result in much-needed advancements in the field. However, incoming researchers have a diverse backgrounds and as newcomers to the electrochemical community, they sometimes lack familiarity with the core concepts, well-established procedures, and methodologies that define the standards of the discipline. This issue's importance has been acknowledged, and various publications have been written to guide researchers in doing accurate evaluations. However, to the best of our knowledge, even though these publications demonstrate the methodologies and procedures for approaching the existing challenges none of them address the offered topic with an actual example. To address this gap, we present a step-by-step procedure for the electrochemical analysis of polypyrrole, a widely utilized conducting polymer with significant potential as an electrode material for supercapacitors and batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.synthmet.2023.117386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.synthmet.2023.117386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Lorenzo Spadaro; Alessandra Palella; Francesco Arena;Current prospective in the liquid fuels synthesis is prefiguring a greater integration of eco-friendly technologies based on the use of "non-fossil" hydrogen and CO. Therefore, a series of MO@CeO catalysts (i.e. M = Cu, Fe and Zn), at different MO-to-CeO ratio (ca. 0.2-1.5 wt./wt.), were prepared and performed in the in the CO hydrogenation reactions at 20 bar and 200-300 °C, (GHSV; 4,400NL?kg?cat h). Depending on catalyst composition, the CO conversion proceeds according to a "volcano shaped" profiles, resulting more effective at an optimal value of interfacial area (i.e. ? = 0.25). This also substantiate that the occurrence of structural-electronic synergistic effects plays a key role in the catalytic properties. The different catalytic pathway of CuZnO@CeO and CuFeZnO@CeO catalysts prove "dual-sites" and "triple-sites" mechanisms in the CO hydrogenation reactions, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cattod.2020.04.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cattod.2020.04.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Ridha Djellabi; Dominic Aboagye; Melissa Greta Galloni; Vaibhav Vilas Andhalkar; +6 AuthorsRidha Djellabi; Dominic Aboagye; Melissa Greta Galloni; Vaibhav Vilas Andhalkar; Sana Nouacer; Walid Nabgan; Sami Rtimi; Magda Constantí; Francisco Medina Cabello; Sandra Contreras;pmid: 36403911
The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Mahmoud, Mohamed; El-Kalliny, Amer S.; Squadrito, Gaetano;Photoelectrochemical water splitting is a green, sustainable technology for harnessing solar energy to generate H-2; however, the energy demand needed to drive this non-spontaneous reaction limits the technology's competitiveness. In addition, the poor efficiency of photoanodes in photoelectrochemical cells (PECs) has been one of the factors governing the overall solar conversion efficiency of PECs. Here, a novel stacking approach of n-type titanium dioxide nanotubes (TiO2 NTs) photoanodes was proposed to improve their light-harvesting and charge transfer properties. Interestingly, the stacked photoanodes exhibited a much higher photocurrent of -0.79 mA/cm2 at 1 V (vs. SHE) than single sheet TiO2 NTs photoanode (i.e., -0.07 mA/cm(2)) at the same po-tential, implying that TiO2 NTs stacking approach resulted in effective light absorbance and management and much lower charge transfer resistance across the interface of photoanode and electrolyte. In addition, a self-biased, integrated solar-microbial system was developed, in which a microbial fuel cell (MFC) fed with real animal manure wastewater was used as a power source to drive sustainable H-2 production in a photo-electrochemical cell having stacked TiO2 NTs photoanodes. Without any external bias, the integrated system, which comprises an MFC and a three-sheet TiO2 NTs photoanode-based PEC, generated a photocurrent of 0.44 mA/cm(2) with an H-2 production rate of 0.45 +/- 0.03-m(3) H-2/m(3) day under 1 sun illumination (100 mW/cm(2)), which is -1.5-1.9-fold higher than other tested systems. This study demonstrates the synergetic effect between MFCs and PECs, in which electrons recovered from wastewater biodegradation in MFCs significantly increase H-2 generation in PECs without the need for an external power source.
CNR ExploRA arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Russian FederationPublisher:Pleiades Publishing Ltd Tychinkin, I. V.; Shishlov, O. F.; Glukhikh, V. V.; Stoyanov, O. V.; Kolpakova, M. V.;Abstract: This paper considers the use of lignin during the preparation of phenol-formaldehyde resins. The effect of lignin on the properties of phenol-formaldehyde resins and materials based on them is studied. The obtained resins are characterized by differential scanning calorimetry (DSC). The results show that, in the case of increasing the concentration of lignin, the time of the polycondensation reaction, the energy of activation, and the curing time of lignin-containing resins increase. The main parameters of the lignin-containing resins correspond to GOST (State Standard) 20907–2016 except for the concentration of free formaldehyde. The obtained resins are used to obtain a foam composite material—phenolic foam. It is noted that phenolic foams based on resins containing 5–10% lignin in the composition have a higher compression strength in comparison with other samples. At a concentration of lignin in the resin of 20%, the compression strength of the ready-to-use thermal-insulation materials decreases relative to other samples, while it turns out to be impossible to obtain a foam material in the case of using a resin with 30% lignin. The results of the study make it possible to recommend the use of a small amount of lignin (5–10%) in the production of phenol-formaldehyde resins and further production of a thermal-insulation material with an increased compression strength. © 2023, Pleiades Publishing, Ltd.
Electronic archive o... arrow_drop_down Polymer Science Series DArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUral State Forest Engineering University (USFEU): Electronic ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1995421223020454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Electronic archive o... arrow_drop_down Polymer Science Series DArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUral State Forest Engineering University (USFEU): Electronic ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1134/s1995421223020454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu