- home
- Advanced Search
- Energy Research
- biological sciences
- Energy Research
- biological sciences
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:UKRI | Ocean-ICU Improving Carbo..., UKRI | CoccoTrait: Revealing Coc...UKRI| Ocean-ICU Improving Carbon Understanding ,UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsRosie M. Sheward; Alex J. Poulton; Jeremy R. Young; Joost de Vries; Fanny M. Monteiro; Jens O. Herrle;pmid: 38956105
AbstractCalcification and biomass production by planktonic marine organisms influences the global carbon cycle and fuels marine ecosystems. The major calcifying plankton group coccolithophores are highly diverse, comprising ca. 250–300 extant species. However, coccolithophore size (a key functional trait) and degree of calcification are poorly quantified, as most of our understanding of this group comes from a small number of species. We generated a novel reference dataset of coccolithophore morphological traits, including cell-specific data for coccosphere and cell size, coccolith size, number of coccoliths per cell, and cellular calcite content. This dataset includes observations from 1074 individual cells and represents 61 species from 25 genera spanning equatorial to temperate coccolithophore populations that were sampled during the Atlantic Meridional Transect (AMT) 14 cruise in 2004. This unique dataset can be used to explore relationships between morphological traits (cell size and cell calcite) and environmental conditions, investigate species-specific and community contributions to pelagic carbonate production, export and plankton biomass, and inform and validate coccolithophore representation in marine ecosystem and biogeochemical models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03544-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03544-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:UKRI | Ocean-ICU Improving Carbo..., UKRI | CoccoTrait: Revealing Coc...UKRI| Ocean-ICU Improving Carbon Understanding ,UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsRosie M. Sheward; Alex J. Poulton; Jeremy R. Young; Joost de Vries; Fanny M. Monteiro; Jens O. Herrle;pmid: 38956105
AbstractCalcification and biomass production by planktonic marine organisms influences the global carbon cycle and fuels marine ecosystems. The major calcifying plankton group coccolithophores are highly diverse, comprising ca. 250–300 extant species. However, coccolithophore size (a key functional trait) and degree of calcification are poorly quantified, as most of our understanding of this group comes from a small number of species. We generated a novel reference dataset of coccolithophore morphological traits, including cell-specific data for coccosphere and cell size, coccolith size, number of coccoliths per cell, and cellular calcite content. This dataset includes observations from 1074 individual cells and represents 61 species from 25 genera spanning equatorial to temperate coccolithophore populations that were sampled during the Atlantic Meridional Transect (AMT) 14 cruise in 2004. This unique dataset can be used to explore relationships between morphological traits (cell size and cell calcite) and environmental conditions, investigate species-specific and community contributions to pelagic carbonate production, export and plankton biomass, and inform and validate coccolithophore representation in marine ecosystem and biogeochemical models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03544-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03544-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu