Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,904 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Open Source
  • biological sciences
  • 6. Clean water
  • 12. Responsible consumption

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Annika W. Walters;
    Annika W. Walters
    ORCID
    Harvested from ORCID Public Data File

    Annika W. Walters in OpenAIRE
    orcid David M. Post;
    David M. Post
    ORCID
    Harvested from ORCID Public Data File

    David M. Post in OpenAIRE

    The natural hydrology of streams and rivers is being extensively modified by human activities. Water diversion, dam construction, and climate change have the potential to increase the frequency and intensity of low-flow events. Flow is a dominant force structuring stream aquatic insect communities, but the impacts of water diversion are poorly understood. Here we report results of an experimental stream flow diversion designed to test how aquatic insect communities respond to a low-flow disturbance. We diverted 40% to 80% of the water in three replicate streams for three summers, leading to summer flow exceedance probabilities of up to 99.9%. Shifts in habitat availability appeared to be a major driver of aquatic insect community responses. Responses also varied by habitat type: total insect density decreased in riffle habitats, but there was no change in pool habitats. Overall, the total biomass of aquatic insects decreased sharply with lowered flow. Collector-filterers, collector-gatherers, and scrapers were especially susceptible, while predatory insects were more resistant. Despite extremely low flow levels, there was no shift in aquatic insect family richness. The experimental water withdrawal did not increase water temperature or decrease water quality, and some wetted habitat was always maintained, which likely prevented more severe impacts on aquatic insect communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Applications
    Article . 2010 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Applications
    Article . 2011 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Applications
      Article . 2010 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Applications
      Article . 2011 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ruttanaprasert, Ruttanachira;
    Ruttanaprasert, Ruttanachira
    ORCID
    Harvested from ORCID Public Data File

    Ruttanaprasert, Ruttanachira in OpenAIRE
    Jogloy, Sanun; Vorasoot, Nimitr; Kesmala, Thawan; +3 Authors

    The objective of this study was to determine effects of drought on selected root growth parameters and develop relationships between root parameters and tuber yield for selected Jerusalem artichoke (JA) genotypes. Three water regimes (Field capacity, 50% available soil water (AW) and 25% AW) and five JA varieties (JA 60, JA 125, JA 5, JA 89 and HEL 65) were planted with factorial treatments in a randomized complete block design with four replications. Data on root dry weight (RDW) and root: shoot ratios (RSR) were measured manually. Root diameter (RD), root length (RL), root surface area (RSA) and root volume (RV) were collected at harvest. Drought tolerance indices (DTI) were calculated for all root parameters. Drought reduced all root parameters and DTI but increased RSR in JA 60, JA 125, JA 5, and HEL 65. JA 125 had high values for all root traits and DTI of these traits under drought stress. JA 60 had high DTI of RDW, RD and RSR under mild and severe water stress. JA 5 had high DTI of RDW, RD, RL, RSR and RV under drought conditions. JA 89 and HEL 65 performed well for RDW, RD, RL and low DTI of all root characteristics. DTI for root parameters were positively correlated with tuber dry weight under mild and severe water stress. The JA 5, JA 60 and JA 125 varieties showed high DTI for some root traits, indicating that better root parameters contributed to higher tuber yield under drought stress.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: James Powell; G. Maise; J. Paniagua;

    A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar Cap of Mars and utilize readily available water ice and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the ice surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the ice, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the ice cap itself. The North Polar Cap is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the ice cap, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean. Details of the ALPH system, which is based on existing technology, are presented. ALPH units could be developed and demonstrated on Earth ice sheets within a few years. An Earth-Mars space transport architecture is described, in which Mars produced propellant and supplies for return journeys to Earth would be lifted with relatively low DeltaV to Mars orbit, and from there transported back to Earth orbit, enabling faster and lower cost trips from Earth to Mars. The exploration capability and quality of life in a mature Martian colony of 500 persons located on the North Polar Cap is outlined.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Astronauticaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Acta Astronautica
    Article . 2001 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Astronauticaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Acta Astronautica
      Article . 2001 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Nasim Jalilnejad Falizi;
    Nasim Jalilnejad Falizi
    ORCID
    Harvested from ORCID Public Data File

    Nasim Jalilnejad Falizi in OpenAIRE
    orcid Tülay Güngören Madenoğlu;
    Tülay Güngören Madenoğlu
    ORCID
    Harvested from ORCID Public Data File

    Tülay Güngören Madenoğlu in OpenAIRE
    Yasemin Kukul Kurttaş; orcid Kamil Meriç;
    Kamil Meriç
    ORCID
    Harvested from ORCID Public Data File

    Kamil Meriç in OpenAIRE
    +7 Authors

    AbstractBACKGROUNDIncreased water demand caused by population growth has forced the reuse of wastewater after treatment. Safflower is a salt‐tolerant plant that can be irrigated with moderately saline water. Cultivation of safflower plant can be achieved by irrigation with membrane bioreactor (MBR)‐treated wastewater and further utilized in oil and then biodiesel production according to standard (TS EN 14214). Irrigation water quality can impact oil and biodiesel yield and content.RESULTSIn this study, safflower plants were cultivated using different irrigation strategies in a field next to a wastewater treatment plant in Menderes‐Izmir, Turkey. These strategies were: irrigation weekly with MBR‐treated wastewater or with tap water; with MBR‐treated wastewater just three times during phenological periods; and without irrigation. Oil yields for seeds of the plants irrigated by these strategies were 103.8, 98.7, 63.7 and 57.4 (kg oil daa−1), respectively. Oil yield was found to be highest following weekly irrigation with MBR‐treated wastewater that has a high salinity of 4 mS cm−1. Safflower oil methyl ester (SOME) contents of biodiesel were 94.6 and 94.5% (g SOME:g biodiesel), and ester yields of biodiesel were 71.3 and 81.4% (g biodiesel:g oil–1) for safflower irrigated weekly with MBR‐treated wastewater and tap water, respectively.CONCLUSIONIt is concluded that SOME yields and contents of safflowers irrigated with MBR‐treated wastewater and tap water weekly are so close. © 2019 Society of Chemical Industry

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chemical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Chemical Technology & Biotechnology
    Article . 2019 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chemical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Chemical Technology & Biotechnology
      Article . 2019 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Pil Joo Kim;
    Pil Joo Kim
    ORCID
    Harvested from ORCID Public Data File

    Pil Joo Kim in OpenAIRE
    orcid Gil Won Kim;
    Gil Won Kim
    ORCID
    Harvested from ORCID Public Data File

    Gil Won Kim in OpenAIRE
    Ho Gyeong Chae; Song Rae Cho; +1 Authors

    Plastic film mulching (FM) became a general practice to enhance crop productivity and its net primary production (NPP), but it can increase greenhouse gas (GHG) emissions. The proper addition of organic amendments might effectively decrease the impact of FM on global warming. To evaluate the feasibility of biomass addition on decreasing this negative influence, cover crop biomass as a green manure was incorporated with different recycling levels (0-100% of aboveground biomass) under FM and no-mulching. The net global warming potential (GWP) which integrated with soil C stock change and GHG (N2O and CH4) fluxes with CO2-equivalent was evaluated during maize cultivation. Under the same biomass incorporation, FM significantly enhanced the grain productivity and NPP of maize by 22-61 and 18-58% over no-mulching, respectively. In contrast, FM also highly increased the respired C loss, which was 11-95% higher than NPP increase, over no-mulching. Irrespective with biomass recycling ratio and mulching system, negative NECB which indicates the decrease of soil C stock was observed, mainly due to big harvest removal. FM decreased more soil C stock by 57-158% over no-mulching, but its C stock was clearly increased with increasing biomass addition. FM significantly increased total N2O and CH4 fluxes by 4-61 and 140-600% over no-mulching, respectively. Soil C stock changes mainly decided net GWP scale, but N2O and CH4 fluxes negligibly influenced. As a result, FM highly increased net GWP over no-mulching, while this net GWP was clearly decreased with increasing biomass application. However, cover cropping, and its biomass recycling was not enough to compensate the negative impact of FM on global warming. Therefore, more biomass incorporation might be essential to compensate this negative effect of FM.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Isamara Sousa Conceição de Benathar; Bruna Virgílio Almeida; orcid Marcos Rodrigues;
    Marcos Rodrigues
    ORCID
    Harvested from ORCID Public Data File

    Marcos Rodrigues in OpenAIRE
    Jonathan Benathar de Oliveira Sousa; +3 Authors

    Copaifera oleoresin is an important traditional non-timber forest product in the Amazon; however, the Carajas National Forest has no plans to harvest this product to benefit extractive families. The objective of this study was to determine Copaifera oleoresin extraction potential in the Carajas National Forest, Eastern Amazon, identifying variables that could increase the chances of finding oleoresin. We mapped 129 trees and formulated a multiple logistic regression model (logit) with the collected variables: diameter at breast height (DBH), tree crown, tree health, presence of termites, and presence of damage or bifurcation. Among the mapped trees, we perforated 50 trees to harvest the oleoresin. Most of the oleoresin production occurred in trees with a DBH between 50 and 75 cm. The logit model predicted that an increase in DBH, dense crown, unhollowed trunk, and presence of damage or bifurcation increased the chances of oleoresin extraction, whereas termites did not. The model could contribute to the sustainable management of forest resources by avoiding random perforation of trees and establishing rational routes and cycles of extraction. Since the variables are easily measured, the model can be continuously used for future extractions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environment Developm...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environment Development and Sustainability
    Article . 2020 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environment Developm...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environment Development and Sustainability
      Article . 2020 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vinícius M. Melo; Juliana Calábria de Araújo; Felipe V. Duarte; João Paulo R. Vieira; +3 Authors

    The use of biofilters (working bed volume of 7.85 L) for the oxidation of CH4 at low concentrations (from 0.17%v/v to 3.63%v/v, typically in waste gas from anaerobic sewage treatment) was investigated and four empty bed residence times were tested (in min): 42.8, 29.5, 19.6, and 7.4. Mixtures of organic (composted leaves) and three non-organic materials (sponge-based material - SBM, blast furnace slag - BFS, and expanded vermiculite - ExpV) were used as packing media. Along 188 operational days after the steady state was reached (95 days for start-up), the CH4 mineralization decreased while the inlet loads gradually increased from 3.0 ± 0.8 gCH4 m(-3) h(-1) to 148.8 ± 4.4 gCH4 m(-3) h(-1). The biofilter packed with ExpV showed the best results, since the CH4 conversions decreased from 95.0 ± 5.0% to 12.7 ± 3.7% as a function of inlet concentration, compared to the other two biofilters (SBM and BFS) which showed CH4 conversions decreasing from 56.0 ± 5.4% to 3.5 ± 1.2% as a function of inlet concentration. The methanotrophic activity of biomass taken from ExpV biofilter was three times higher than the activity of biomass from the other two biofilters. Taken together, these results suggested that ExpV provides an attractive environment for microbial growth, besides the mechanical resistance provided to the whole packing media, showing the potential to its use in biofiltration of diffuse CH4 emissions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sayaka Tamaki; Kouichi Ohwada; orcid Tadao Kunihiro;
    Tadao Kunihiro
    ORCID
    Harvested from ORCID Public Data File

    Tadao Kunihiro in OpenAIRE
    Akihiro Inoue; +5 Authors

    We monitored seasonal changes of the abundance and composition of microorganisms in the fish-farm sediment in Kusuura Bay, Amakusa, Japan, using the quinone profiling technique, during bioremediation by introducing cultured colonies of polychaete, Capitella sp. I. In November 2004, approximately 9.2 million cultured worms were transferred to the fish-farm sediment, which increased rapidly, and reached 458.5 gWW/m(2) (528,000 indiv./m(2)) in March 2005. During this fast-increasing period of Capitella, the microbial quinone content of the surface sediment (0-2 cm) also increased markedly, and reached 237 micromol/m(2) in January 2005, although the water temperature decreased to the lowest levels in the year. Particularly, the mole fraction of ubiquinone-10 in total quinones in the sediment, indicating the presence of alpha subclass of Proteobacteria, increased by 9.3%. These facts suggest that the bacterial growth was enhanced markedly by the biological activities of worms in the sediment, and the bacteria played an important role in the decomposition of the organic matter in the sediment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Pollution Bul...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Pollution Bulletin
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Pollution Bul...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Pollution Bulletin
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wang Yun; Ye Ni; Zhi-Hao Sun;

    Clostridium acetobutylicum strains used in most Chinese ABE (acetone-butanol-ethanol) plants favorably ferment starchy materials like corn, cassava, etc., rather than sugar materials. This is one major problem of ABE industry in China and significantly limits the exploitation of cheap waste sugar materials. In this work, cane molasses were utilized as substrate in ABE production by Clostridium saccharobutylicum DSM 13864. Under optimum conditions, total solvent of 19.80 g/L (13.40 g/L butanol) was reached after 72 h of fermentation in an Erlenmeyer flask. In a 5-L bioreactor, total solvent of 17.88 g/L was attained after 36 h of fermentation, and the productivity and yield were 0.50 g/L/h and 0.33 g ABE/g sugar consumption, respectively. To further enhance the productivity, a two-stage semicontinuous fermentation process was steadily operated for over 8 days (205 h, 26 cycles) with average productivity (stage II) of 1.05 g/L/h and cell concentration (stage I) of 7.43 OD(660), respectively. The average batch fermentation time (stage I and II) was reduced to 21-25 h with average solvent of 15.27 g/L. This study provides valuable process data for the development of industrial ABE fermentation process using cane molasses as substrate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Biochemistry...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Biochemistry and Biotechnology
    Article . 2012 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Biochemistry...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Biochemistry and Biotechnology
      Article . 2012 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ece Ümmü Deveci; orcid Çağdaş Gönen;
    Çağdaş Gönen
    ORCID
    Harvested from ORCID Public Data File

    Çağdaş Gönen in OpenAIRE

    It is well known that energy-related emissions have been increasing the global warming and pushing the climate change. In the face of this situation biomass-based biofuels, which is a kind of renewable energy source, are great alternatives instead of fossil derivative fuels. Moreover, biomass can be found easily and widely, which makes it an economical alternative. Biological conversation rate of the biomass to the biofuel is insufficient because of the molecular structure of the biomass. Pretreatment is required to increase the bioavailability of the biomass as the raw material. In this study, weak and strong acid pretreatments are studied under pressurized and non-pressurized conditions for apple pulp as biomass, which is an agro-industrial residue coming from industrial plants. Box-Behnken statistical design is used to determine the optimum level of some factors as time, chemical dose, and raw material dose. While the maximum total sugar concentration was found to be 23.71 g/L with sulfuric acid pretreatment, the reduced sugar concentration under pressurized conditions with strong acid pretreatment was found as 17.00 g/L.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environment
    Article . 2018 . Peer-reviewed
    License: SAGE TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environment
      Article . 2018 . Peer-reviewed
      License: SAGE TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
We use cookies
This website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only upon approval.

Read more about our Cookies policy.