Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
71 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • biological sciences
  • 12. Responsible consumption
  • 11. Sustainability
  • 9. Industry and infrastructure

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dircks, Klaus; Henze, Mogens; orcid van Loosdrecht, M.C.M.;
    van Loosdrecht, M.C.M.
    ORCID
    Harvested from ORCID Public Data File

    van Loosdrecht, M.C.M. in OpenAIRE
    Mosbæk, Hans; +1 Authors

    This research analyses the accumulation and degradation of poly-beta-hydroxybutyrate (PHB) in experiments with pulse addition of acetate to samples of activated sludge from pilot-plant and full-scale wastewater treatment plants. The experiments are divided into two periods: a feast period defined as the time when acetate is consumed and a famine period when the added acetate has been exhausted. In the feast period the significant process occurring is the production of PHB from acetate. The produced PHB is utilised in the famine period for production of glycogen and biomass. According to modelling results approximately 90% of the total potential growth occurs in the famine period utilising the stored PHB. The degradation rate for PHB in the famine period is found to be dependent on the level of PHB obtained at the end of the feast period. It was found that multiple order kinetics gives a good description of the rate of PHB degradation. The examined sludge of low SRT origin is found to degrade PHB faster than long SRT sludge at high fractions of PHB. The observed yield of glycogen on PHB in the famine period is in the range of 0.22-0.33 g COD/g COD depending on the SRT. The storage pool of glycogen in the examined sludge is more slowly degraded than PHB (COD/COD/h).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research at ASB
    Article . 2006
    Data sources: Research at ASB
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2001 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Water Research
    Article . 2001
    addClaim
    72
    citations72
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research at ASB
      Article . 2006
      Data sources: Research at ASB
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2001 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Water Research
      Article . 2001
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Cheung, William W L;
    Cheung, William W L
    ORCID
    Harvested from ORCID Public Data File

    Cheung, William W L in OpenAIRE
    orcid Palacios-Abrantes, Juliano;
    Palacios-Abrantes, Juliano
    ORCID
    Harvested from ORCID Public Data File

    Palacios-Abrantes, Juliano in OpenAIRE
    orcid Frölicher, Thomas L;
    Frölicher, Thomas L
    ORCID
    Harvested from ORCID Public Data File

    Frölicher, Thomas L in OpenAIRE
    Palomares, Maria Lourdes; +8 Authors

    AbstractRebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14—Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch‐based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7–2.7 times (interquartile range) of current (average 2014–2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4–2.0 and 1.1–1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo‐Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate‐sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade‐offs between climate‐resilient biomass rebuilding and the high near‐term demand for seafood to support the well‐being of coastal communities across the tropics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.4...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Global Change Biology
    Article . 2022 . Peer-reviewed
    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.4...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Global Change Biology
      Article . 2022 . Peer-reviewed
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dieleman, J.A.; de Visser, P.H.B.; Vermeulen, P.C.M.;

    To fulfill the market demand for year-round high-quality production, the use of assimilation light has increased over the last decades by 10% per year and continues to expand. The electrical consumption involved largely contributes to the high CO2 emission of greenhouse horticulture. Following the Kyoto protocol, the emission of greenhouse gases should be reduced. Light-emitting diodes (LEDs) can contribute to the reduction in carbon footprint by their high efficiency in converting electricity into light. Due to their low heat emission, LEDs can be positioned within the canopy, which allows the design of new, low-carbon production systems. Inter-canopy LED lighting is already commercially used on a small scale. This paper describes the steps taken to further optimize LED-based production systems. Since it is impossible to test all possible strategies of using LED lighting, a 3D functional-structural plant model was used to do scenario calculations to determine the light interception of the canopy and crop photosynthesis at different positions and orientations of the LEDs. Orienting inter-lighting LEDs 30° downwards positively affected the light interception by the crop, provided that there was sufficient leaf area below the LEDs to prevent light loss to the floor. Replacing the conventional high-pressure sodium (HPS) lamps by LED lamps (efficiency 2.3 μmol J-1) reduced the carbon footprint of a tomato crop by approximately 15%, due to a combination of the higher efficiency of LEDs and an increased use of thermal energy to maintain plant temperatures. These calculations were validated in a greenhouse trial, where the production and energy consumption of a HPS+LED hybrid system was compared to those of a LED top-lighting and LED inter-lighting combination. Plant development and production levels were comparable, whereas the electrical consumption in the LED+LED system was 37% lower than under HPS+LED lighting. Approximately half of the reduction in electricity was used for additional heat input to maintain plant development rate, which agreed well with the carbon footprint calculations. Work in the near future will focus on plant architecture and LEDs with altered light emission patterns, aiming to design new LEDbased production systems, which combine a high production level with a low-carbon footprint.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Horticulturaearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2016
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Other literature type . 2016
    Data sources: Research@WUR
    Acta Horticulturae
    Article . 2016 . Peer-reviewed
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Horticulturaearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2016
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Other literature type . 2016
      Data sources: Research@WUR
      Acta Horticulturae
      Article . 2016 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Danilo Russo;
    Danilo Russo
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Danilo Russo in OpenAIRE
    Danilo Russo; orcid Luca Santini;
    Luca Santini
    ORCID
    Harvested from ORCID Public Data File

    Luca Santini in OpenAIRE
    orcid Luigi Maiorano;
    Luigi Maiorano
    ORCID
    Harvested from ORCID Public Data File

    Luigi Maiorano in OpenAIRE
    +2 Authors

    (Uploaded by Plazi for the Bat Literature Project) No abstract provided.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of Nature
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2016
    Data sources: IRIS Cnr
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2016
    Data sources: Datacite
    ZENODO
    Article . 2016
    Data sources: ZENODO
    ZENODO
    Article . 2016
    Data sources: Datacite
    addClaim
    101
    citations101
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Vladica Simić;
    Vladica Simić
    ORCID
    Harvested from ORCID Public Data File

    Vladica Simić in OpenAIRE
    orcid Snežana Simić;
    Snežana Simić
    ORCID
    Harvested from ORCID Public Data File

    Snežana Simić in OpenAIRE
    orcid Momir Paunović;
    Momir Paunović
    ORCID
    Harvested from ORCID Public Data File

    Momir Paunović in OpenAIRE
    orcid Nataša Radojković;
    Nataša Radojković
    ORCID
    Harvested from ORCID Public Data File

    Nataša Radojković in OpenAIRE
    +3 Authors

    In this study, we aimed to assess the population status of bleak (Alburnus spp.) over the Western Balkan Peninsula in terms of its sustainable use. A second objective was to determine key factors important for fishery management planning. Two different basins, continental (the Danube Basin and the Sava River sub-basin) and marine (the Adriatic and the Aegean Sea Basins) were examined. A sustainability assessment and factor analysis were conducted using the adjusted ESHIPPOfishing model, extended with additional socio-economic sub-elements, and the categorical principal components analysis (CATPCA), respectively. The results of the assessment revealed the bleak populations in the Danube Basin and the Sava River sub-basin to be highly sustainable. The population characteristics with abiotic and biotic factors were responsible for this status, while the influence of socio-economic factors was insignificant. The sustainability status of the bleak populations of the Mediterranean basin varied, with the populations from Ohrid and Skadar Lakes showing a high and those from Prespa and Dojran Lakes a medium status. Socio-economic factors with traditional fishing were the most important for the Mediterranean bleak populations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RADaR - Institute f...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RADaR - Institute f...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lindegaard, Klaus; orcid Segura-Bonilla, Olman;
    Segura-Bonilla, Olman
    ORCID
    Harvested from ORCID Public Data File

    Segura-Bonilla, Olman in OpenAIRE

    SUMMARY.The policy of joint implementation is emerging as a new strategy for implementing global environmental aims, especially with regard to regulating the climate change process, where emission source and sink countries agree to develop a joint program upon a mixed argument of partnership and cost-effectiveness. Pros and cons have emerged during the development of this system.Costa Rica is the first country, together with Norway, to launch such a program jointly, and Costa Rica is also the first country developing Carbon Tradable Offset bonds to be sold on the world market as a new commodity. It is hoped that this initiative will help the country and its inhabitants to create better living conditions and economic growth; however, this new institutional transformation and international acceptance of this new instrument are only just beginning to develop.This, therefore, provides a very interesting field for research from a distinct perspective. We chose to start searching for positive or negative impact...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2001
    Data sources: VBN
    Journal of Sustainable Forestry
    Article . 2001 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    3
    citations3
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2001
      Data sources: VBN
      Journal of Sustainable Forestry
      Article . 2001 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid J.E. Velázquez;
    J.E. Velázquez
    ORCID
    Harvested from ORCID Public Data File

    J.E. Velázquez in OpenAIRE
    orcid M.A. Sadañoski;
    M.A. Sadañoski
    ORCID
    Harvested from ORCID Public Data File

    M.A. Sadañoski in OpenAIRE
    orcid P.D. Zapata;
    P.D. Zapata
    ORCID
    Harvested from ORCID Public Data File

    P.D. Zapata in OpenAIRE
    N.A. Comelli; +1 Authors

    The aims of this article were to select fungal species with high tolerance and high growth rate in mediums supplemented with limonene and citrus essential oils (CEOs), and to test the bioconversion capability of the chosen isolates for the bioproduction of aroma compounds.Based on the use of predictive mycology, 21 of 29 isolates were selected after assaying R-(+)-limonene and CEO tolerance (10 g l-1 ). With a dendrogram divisive coefficient of 0·937, the subcluster two with isolates Aspergillus niger LBM 055, Penicillium sp. LBM 150, Penicillium sp. LBM 151 and Penicillium sp. LBM 154 gathered the highest tolerance and mycelia growth speed. Ultrastructural analysis indicated that culture media containing limonene had no visible toxic activity that could promote morphological changes in the fungal cell wall. The biomass of A. niger LBM055 was distinctive in liquid media supplemented with R-(+)-limonene (0·57 ± 0·07 g) and it was selected to prove bioconversion capacity, under static and agitated conditions, and converted up to 98% of limonene, yielding a wide variety of products that were quantified by GC-FID. It was obtained at molecular weights less than limonene (64-100%), between limonene and α-terpineol (12-72%) and greater than α-terpineol (2-48%).Aspergillus niger LBM 055, Penicillium sp. LBM 150, Penicillium sp. LBM 151 and Penicillium sp. LBM 154 showed to the highest tolerance and growth rate in mediums supplemented with R-(+)-limonene and orange and lemon essential oils. Particularly, A. niger LBM055, showed limonene bioconversion capability and produced different molecular weights compounds such us α-terpineol.Different bioproducts can be obtained by changing operative condition with the same fungus, and this bioprocess aspect is a significant approach to be adopted on industrial scale leading to the creation of new natural flavours and fragrance compositions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CONICET Digital
    Article . 2020
    License: CC BY NC SA
    Data sources: CONICET Digital
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Applied Microbiology
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CONICET Digital
      Article . 2020
      License: CC BY NC SA
      Data sources: CONICET Digital
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Applied Microbiology
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Os, E.A. van; Bruins, M.; Beerling, E.; Jurgens, R.; +2 Authors

    The aim of the research project was to achieve closure by two complementary means: 1) maximising reuse of the nutrient solution by solving problems in recircula-tion that leads to discharge, and 2) purification of the left over discharged water. In this paper the technical and economic aspects of purification strategies for single companies will be discussed. An evaluation of different techniques concluded that reverse osmosis (RO) and membrane distillation (MD) offer the best perspectives to purify the discharge water. Subsequent laboratory and onsite studies showed that ca. 80% of the discharge water can be recovered for reuse. For both technologies the water may be pre-treated with nano-filtration (NF) to increase the recovery of nutrients, and with advanced oxidation (AOP) to breakdown growth inhibition products for longer recirculation, and (in a higher dosage) to break down plant protection products in order to gain concentrate with an increased value. Based on these four technologies a range of purification strategies were formulated for which the treatment costs were estimated for two crops (rose and tomato) and two company sizes (5 and 30 ha) and three volumes of discharge (250, 500 and 1,250 m3/ha/yr). Between the two crops (rose and tomato) only little differences in costs of purification were found. Costs per ha decrease rapidly with decreasing volume of the discharge water. However, a scale advantage was found for large companies (30 ha) compared to the sector average scale of 5 ha. For the short term AOP (only reduction of plant protection products by about 80%) and reverse osmosis can be used economical. For the long term nano-filtration and membrane distillation may have prospects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Conference object . 2014
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Other literature type . 2014
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Acta Horticulturae
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Conference object . 2014
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Other literature type . 2014
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Acta Horticulturae
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Liu, Xiaoying; orcid Jensen, Peter Ruhdal;
    Jensen, Peter Ruhdal
    ORCID
    Harvested from ORCID Public Data File

    Jensen, Peter Ruhdal in OpenAIRE
    orcid Workman, Mhairi;
    Workman, Mhairi
    ORCID
    Harvested from ORCID Public Data File

    Workman, Mhairi in OpenAIRE

    Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol production process, potentially improving economics and reducing waste from industrial biodiesel production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research at ASB
    Article . 2011
    Data sources: Research at ASB
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    77
    citations77
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research at ASB
      Article . 2011
      Data sources: Research at ASB
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sevel, L; Ingerslev, Morten; orcid Nord-Larsen, Thomas;
    Nord-Larsen, Thomas
    ORCID
    Harvested from ORCID Public Data File

    Nord-Larsen, Thomas in OpenAIRE
    orcid Jørgensen, Uffe;
    Jørgensen, Uffe
    ORCID
    Harvested from ORCID Public Data File

    Jørgensen, Uffe in OpenAIRE
    +3 Authors

    Short rotation coppice (SRC) willow is an emerging cropping system in focus for production of biomass for energy. To increase production, the willow is commonly fertilized, but studies have shown differing effects of fertilization on biomass production, ranging from almost no response to considerable positive effects. Focus has also been on replacing mineral fertilizer with organic waste products, such as manure and sludge. However, the effect on biomass production and environmental impact of various dosage and types of fertilizer is not well described. Therefore we studied the environmental impacts of different doses of mineral fertilizer, manure and sewage sludge in a commercially grown SRC willow stand. We examined macro nutrient and heavy metal leaching rates and calculated element balances to evaluate the environmental impact. Growth responses were reported in a former paper (Sevel et al. “Fertilization of SRC Willow, I: Biomass Production Response” Bioenergy Research, 2013). Nitrogen leaching was generally low, between 1 and 7 kg N ha−1 year−1 when doses of up to 120 kg N ha−1 year−1 were applied. Higher doses of 240 and 360 kg N ha−1 as single applications caused leaching of 66 and 99 kg N ha−1 year−1, respectively, indicating N saturation of the system. Previous intensive farming including high doses of fertilizer may be responsible for a high soil N status and the high N leaching rates. However, moderate fertilization input could not compensate P and K exports with the biomass harvest. No elevated leaching of heavy metals was observed for any fertilization treatments and more cadmium than applied with the fertilizer was removed with the biomass from the system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2013 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2013 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph