- home
- Advanced Search
- Energy Research
- engineering and technology
- Energy Research
- engineering and technology
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Hussein M. Maghrabie; Mohamed Khalil; M. Attalla; H.E. Fawaz;Abstract In this study, impingement/effusion cooling with cross-flow of in-line array of electronic components (ECs) is investigated numerically using RNG k-ɛ turbulence model. The cooling process is examined for two channel base configurations i.e., solid board (SB) and perforated board (PB). Effects of effusion perforation diameter (d/l) and its position (s/l) are considered on flow structure, temperature contours, heat transfer, and friction coefficient for different jet-to-cross Reynolds number ratios (ReR). Throughout the experiments, the jet position is kept at the third EC [1] . The results show that utilizing perforated board generates a new E vortex behind each component and the magnification of the wake vortex depends substantially on both perforation diameter and position. The ratio of average heat transfer coefficient ( h ¯ R ) on the rear faces of ECs decreases with increasing s/l; while, it increases with increasing d/l. As well, d/l has a significant effect on friction coefficient; while, ReR and s/l have inconsiderable effect. Furthermore, the highest value of performance evaluation criteria (PEC) that is accomplished at the largest perforation diameter for the closest one, equals to 1.36 at ReR of 0.5. Also, a proposed correlation is presented to estimate PEC for PB as a function of ReR, d/l, and s/l.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.01.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.01.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Abrar A. A. Mohsen; Hussein M. Maghrabie; M. Attalla;Abstract In the present study, the effect of the inclination angle (ɵ) of a shell and helically coiled tube heat exchanger (SHCT-HE) on its performance utilizing based water, Al2O3/water, and SiO2/water nanofluids is investigated experimentally. The hot based water as well as nanofluids with volume concentrations ( ϕ ) of 0.1 vol%, 0.2 vol%, and 0.3 vol% flow through the coiled tube with a coil Reynolds number (Rec) varied from 6000 to 15000. The inclination angle is measured from the horizontal axis of the SHCT-HE as 0°, 30°, 60°, and 90°. The results indicate that increasing the inclination angle enhances the coil Nusselt number (Nuc) and the effectiveness of SHCT-HE (e); while, it decreases the coil pressure drop (ΔPc). Where, at coil Reynolds number of 15000, changing the orientation of the SHCT-HE from the horizontal to the vertical orientation improves the coil Nusselt number by 11%, 8.3%, and 7.5% for based water, Al2O3/water, and SiO2/water nanofluids with 0.1 vol%, respectively. Furthermore, at vertical orientation of heat exchanger and coil Reynolds number of 6000, utilizing Al2O3/water nanofluid with 0.1 vol% intensifies significantly the coil Nusselt number and the effectiveness than those for the based water by 35.7% and 35.5%, respectively. In addition, increasing the inclination angle up to 30° keeping the performance evaluation criterion (PEC) almost constant and more elevating into the vertical orientation decreases the PEC. Using multiple regression analysis, empirical correlations are proposed to estimate the coil Nusselt number (Nuc) for based water, Al2O3/water, and SiO2/water nanofluids as a function of R e c , θ , a n d ϕ .
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Abdul Ghani Olabi; Tabbi Wilberforce; Abdulrahman Alanazi; Parag Vichare; Enas Taha Sayed; Hussein M. Maghrabie; Khaled Elsaid; Mohammad Ali Abdelkareem;doi: 10.3390/en15144949
Fuel cells (FCs) have received huge attention for development from lab and pilot scales to full commercial scale. This is mainly due to their inherent advantage of direct conversion of chemical energy to electrical energy as a high-quality energy supply and, hence, higher conversion efficiency. Additionally, FCs have been produced at a wide range of capacities with high flexibility due to modularity characteristics. Using the right materials and efficient manufacturing processes is directly proportional to the total production cost. This work explored the different components of proton exchange membrane fuel cells (PEMFCs) and their manufacturing processes. The challenges associated with these manufacturing processes were critically analyzed, and possible mitigation strategies were proposed. The PEMFC is a relatively new and developing technology so there is a need for a thorough analysis to comprehend the current state of fuel cell operational characteristics and discover new areas for development. It is hoped that the view discussed in this paper will be a means for improved fuel cell development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15144949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 153 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15144949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:ASME International Authors: H.E. Fawaz; Hussein M. Maghrabie; Mohamed Khalil; M. Attalla;doi: 10.1115/1.4036788
Numerical study of the effect of jet position (JP) on cooling process of an array of heated obstacles simulating electronic components has been investigated based on realizable k–ε model. Jet positions have been changed to impinge each row of obstacles consecutively. The experiments have been achieved at three different values of jet-to-channel Reynolds number ratio, Rej/Rec = 1, 2, and 4. In this study, a comparison between two different cooling processes, cross flow only (CF) and jet impingement with cross flow (JICF), has been achieved. The flow structure, heat transfer characteristics, and the pumping power have been investigated for different jet positions. The results show that the jet position affects significantly the flow structure, as well as the heat transfer characteristics. According to the results of average heat transfer coefficient and the pumping power, the more effective jet position for all values of jet-to-channel Reynolds number ratio (1, 2, and 4) is achieved when the jets impinge the third row of obstacles (JP3).
Journal of Thermal S... arrow_drop_down Journal of Thermal Science and Engineering ApplicationsArticle . 2017 . Peer-reviewedData sources: CrossrefJournal of Thermal Science and Engineering ApplicationsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4036788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal Science and Engineering ApplicationsArticle . 2017 . Peer-reviewedData sources: CrossrefJournal of Thermal Science and Engineering ApplicationsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4036788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Mohammad Ali Abdelkareem; Hussein M. Maghrabie; Ahmed G. Abo-Khalil; Ohood Hameed Kadhim Adhari; +5 AuthorsMohammad Ali Abdelkareem; Hussein M. Maghrabie; Ahmed G. Abo-Khalil; Ohood Hameed Kadhim Adhari; Enas Taha Sayed; Ali Radwan; Hegazy Rezk; Hussam Jouhara; A.G. Olabi;Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.104384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.104384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hegazy Rezk; Irik Z. Mukhametzyanov; Mohammad Ali Abdelkareem; Tareq Salameh; Enas Taha Sayed; Hussein M. Maghrabie; Ali Radwan; Tabbi Wilberforce; Khaled Elsaid; A.G. Olabi;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Hussein M. Maghrabie; Mohammad Ali Abdelkareem; Abdul Hai Al-Alami; Mohamad Ramadan; +3 AuthorsHussein M. Maghrabie; Mohammad Ali Abdelkareem; Abdul Hai Al-Alami; Mohamad Ramadan; Emad Mushtaha; Tabbi Wilberforce; Abdul Ghani Olabi;Advances in building-integrated photovoltaic (BIPV) systems for residential and commercial purposes are set to minimize overall energy requirements and associated greenhouse gas emissions. The BIPV design considerations entail energy infrastructure, pertinent renewable energy sources, and energy efficiency provisions. In this work, the performance of roof/façade-based BIPV systems and the affecting parameters on cooling/heating loads of buildings are reviewed. Moreover, this work provides an overview of different categories of BIPV, presenting the recent developments and sufficient references, and supporting more successful implementations of BIPV for various globe zones. A number of available technologies decide the best selections, and make easy configuration of the BIPV, avoiding any difficulties, and allowing flexibility of design in order to adapt to local environmental conditions, and are adequate to important considerations, such as building codes, building structures and loads, architectural components, replacement and maintenance, energy resources, and all associated expenditure. The passive and active effects of both air-based and water-based BIPV systems have great effects on the cooling and heating loads and thermal comfort and, hence, on the electricity consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings11090383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 134 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings11090383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV A.G. Olabi; Tabbi Wilberforce; Enas Taha Sayed; Ahmed G. Abo-Khalil; Hussein M. Maghrabie; Khaled Elsaid; Mohammad Ali Abdelkareem;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Hussein M. Maghrabie; Eckehard Specht; M. Attalla;Abstract In this study, experimental investigation has been conducted on fluid flow and heat transfer of rough mini-channels with rectangular cross sections. The mini-channel considered consists of twelve identical rectangular channels with 4 mm width, 8 mm height, and 80 mm length. Air is employed as the working fluid with Reynolds number varied from 1500 to 5000. Four mini-channels were examined with different values of relative surface roughness (ɛ) 1.6 ∗ 10−4, 3.45 ∗ 10−4, 6.15 ∗ 10−4, and 10.5 ∗ 10−4. The friction factor (f), average Nusselt number (Nu), pressure drop penalty factor (Ef), heat transfer enhancement factor (Ehn), and universal evaluation parameter (PEC) were evaluated to study fluid flow and heat transfer of rough mini-channels with rectangular cross sections. The results showed that increasing the Reynolds number (Re) of air passing through the rectangular rough mini-channel, increases the average Nusselt number (Nu) and the pressure drop penalty factor (Ef), while decreasing the friction factor (f) and the heat transfer enhancement factor (Ehn) which, has a great effect on the universal evaluation parameter (PEC) rather than the pressure drop penalty factor (Ef). Moreover, a correlation of the relative surface roughness (e) and the universal evaluation parameter (PEC) was obtained.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2016.01.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2016.01.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohamed Khalil; M. Attalla; H.E. Fawaz; Hussein M. Maghrabie;A computational study of cooling in-line array of heated obstacles simulating electronic components by jet impingement in cross-flow (JICF) has been investigated using RNG k-ε turbulence model. The jet position has been changed to impinge each obstacle consecutively at different jet-to-channel Reynolds number ratios, Rej/Rec = 1, 2, and 4. The main flow structure, the static pressure, local and average Nusselt numbers as well as the thermal enhancement factor have been investigated. The results show that there is a significant variation between the flow structures around an obstacle when subjected to JICF or CF. The friction factor for JICF is greater than that for cross-flow only (CF) by 88% at the first jet position and Rej/Rec = 4. The irregular distribution of local Nusselt number (Nu) on the impinged obstacle is moderated by increasing the Reynolds number ratios. Increasing Reynolds number ratio increases the average Nusselt number (Nu‾) of the downstream obstacles and decreases it for the upstream obstacles. The increment of Nu‾ for whole array for JICF than CF is about 26% at JP3 and Rej/Rec = 4. Moreover, the highest value of thermal enhancement factor is attained at JP3 and it equals 12% for Rej/Rec = 4.
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2016.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2016.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Hussein M. Maghrabie; Mohamed Khalil; M. Attalla; H.E. Fawaz;Abstract In this study, impingement/effusion cooling with cross-flow of in-line array of electronic components (ECs) is investigated numerically using RNG k-ɛ turbulence model. The cooling process is examined for two channel base configurations i.e., solid board (SB) and perforated board (PB). Effects of effusion perforation diameter (d/l) and its position (s/l) are considered on flow structure, temperature contours, heat transfer, and friction coefficient for different jet-to-cross Reynolds number ratios (ReR). Throughout the experiments, the jet position is kept at the third EC [1] . The results show that utilizing perforated board generates a new E vortex behind each component and the magnification of the wake vortex depends substantially on both perforation diameter and position. The ratio of average heat transfer coefficient ( h ¯ R ) on the rear faces of ECs decreases with increasing s/l; while, it increases with increasing d/l. As well, d/l has a significant effect on friction coefficient; while, ReR and s/l have inconsiderable effect. Furthermore, the highest value of performance evaluation criteria (PEC) that is accomplished at the largest perforation diameter for the closest one, equals to 1.36 at ReR of 0.5. Also, a proposed correlation is presented to estimate PEC for PB as a function of ReR, d/l, and s/l.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.01.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.01.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Abrar A. A. Mohsen; Hussein M. Maghrabie; M. Attalla;Abstract In the present study, the effect of the inclination angle (ɵ) of a shell and helically coiled tube heat exchanger (SHCT-HE) on its performance utilizing based water, Al2O3/water, and SiO2/water nanofluids is investigated experimentally. The hot based water as well as nanofluids with volume concentrations ( ϕ ) of 0.1 vol%, 0.2 vol%, and 0.3 vol% flow through the coiled tube with a coil Reynolds number (Rec) varied from 6000 to 15000. The inclination angle is measured from the horizontal axis of the SHCT-HE as 0°, 30°, 60°, and 90°. The results indicate that increasing the inclination angle enhances the coil Nusselt number (Nuc) and the effectiveness of SHCT-HE (e); while, it decreases the coil pressure drop (ΔPc). Where, at coil Reynolds number of 15000, changing the orientation of the SHCT-HE from the horizontal to the vertical orientation improves the coil Nusselt number by 11%, 8.3%, and 7.5% for based water, Al2O3/water, and SiO2/water nanofluids with 0.1 vol%, respectively. Furthermore, at vertical orientation of heat exchanger and coil Reynolds number of 6000, utilizing Al2O3/water nanofluid with 0.1 vol% intensifies significantly the coil Nusselt number and the effectiveness than those for the based water by 35.7% and 35.5%, respectively. In addition, increasing the inclination angle up to 30° keeping the performance evaluation criterion (PEC) almost constant and more elevating into the vertical orientation decreases the PEC. Using multiple regression analysis, empirical correlations are proposed to estimate the coil Nusselt number (Nuc) for based water, Al2O3/water, and SiO2/water nanofluids as a function of R e c , θ , a n d ϕ .
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2020.116013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Abdul Ghani Olabi; Tabbi Wilberforce; Abdulrahman Alanazi; Parag Vichare; Enas Taha Sayed; Hussein M. Maghrabie; Khaled Elsaid; Mohammad Ali Abdelkareem;doi: 10.3390/en15144949
Fuel cells (FCs) have received huge attention for development from lab and pilot scales to full commercial scale. This is mainly due to their inherent advantage of direct conversion of chemical energy to electrical energy as a high-quality energy supply and, hence, higher conversion efficiency. Additionally, FCs have been produced at a wide range of capacities with high flexibility due to modularity characteristics. Using the right materials and efficient manufacturing processes is directly proportional to the total production cost. This work explored the different components of proton exchange membrane fuel cells (PEMFCs) and their manufacturing processes. The challenges associated with these manufacturing processes were critically analyzed, and possible mitigation strategies were proposed. The PEMFC is a relatively new and developing technology so there is a need for a thorough analysis to comprehend the current state of fuel cell operational characteristics and discover new areas for development. It is hoped that the view discussed in this paper will be a means for improved fuel cell development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15144949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 153 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15144949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:ASME International Authors: H.E. Fawaz; Hussein M. Maghrabie; Mohamed Khalil; M. Attalla;doi: 10.1115/1.4036788
Numerical study of the effect of jet position (JP) on cooling process of an array of heated obstacles simulating electronic components has been investigated based on realizable k–ε model. Jet positions have been changed to impinge each row of obstacles consecutively. The experiments have been achieved at three different values of jet-to-channel Reynolds number ratio, Rej/Rec = 1, 2, and 4. In this study, a comparison between two different cooling processes, cross flow only (CF) and jet impingement with cross flow (JICF), has been achieved. The flow structure, heat transfer characteristics, and the pumping power have been investigated for different jet positions. The results show that the jet position affects significantly the flow structure, as well as the heat transfer characteristics. According to the results of average heat transfer coefficient and the pumping power, the more effective jet position for all values of jet-to-channel Reynolds number ratio (1, 2, and 4) is achieved when the jets impinge the third row of obstacles (JP3).
Journal of Thermal S... arrow_drop_down Journal of Thermal Science and Engineering ApplicationsArticle . 2017 . Peer-reviewedData sources: CrossrefJournal of Thermal Science and Engineering ApplicationsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4036788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal Science and Engineering ApplicationsArticle . 2017 . Peer-reviewedData sources: CrossrefJournal of Thermal Science and Engineering ApplicationsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4036788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Mohammad Ali Abdelkareem; Hussein M. Maghrabie; Ahmed G. Abo-Khalil; Ohood Hameed Kadhim Adhari; +5 AuthorsMohammad Ali Abdelkareem; Hussein M. Maghrabie; Ahmed G. Abo-Khalil; Ohood Hameed Kadhim Adhari; Enas Taha Sayed; Ali Radwan; Hegazy Rezk; Hussam Jouhara; A.G. Olabi;Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.104384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.104384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hegazy Rezk; Irik Z. Mukhametzyanov; Mohammad Ali Abdelkareem; Tareq Salameh; Enas Taha Sayed; Hussein M. Maghrabie; Ali Radwan; Tabbi Wilberforce; Khaled Elsaid; A.G. Olabi;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Hussein M. Maghrabie; Mohammad Ali Abdelkareem; Abdul Hai Al-Alami; Mohamad Ramadan; +3 AuthorsHussein M. Maghrabie; Mohammad Ali Abdelkareem; Abdul Hai Al-Alami; Mohamad Ramadan; Emad Mushtaha; Tabbi Wilberforce; Abdul Ghani Olabi;Advances in building-integrated photovoltaic (BIPV) systems for residential and commercial purposes are set to minimize overall energy requirements and associated greenhouse gas emissions. The BIPV design considerations entail energy infrastructure, pertinent renewable energy sources, and energy efficiency provisions. In this work, the performance of roof/façade-based BIPV systems and the affecting parameters on cooling/heating loads of buildings are reviewed. Moreover, this work provides an overview of different categories of BIPV, presenting the recent developments and sufficient references, and supporting more successful implementations of BIPV for various globe zones. A number of available technologies decide the best selections, and make easy configuration of the BIPV, avoiding any difficulties, and allowing flexibility of design in order to adapt to local environmental conditions, and are adequate to important considerations, such as building codes, building structures and loads, architectural components, replacement and maintenance, energy resources, and all associated expenditure. The passive and active effects of both air-based and water-based BIPV systems have great effects on the cooling and heating loads and thermal comfort and, hence, on the electricity consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings11090383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 134 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings11090383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV A.G. Olabi; Tabbi Wilberforce; Enas Taha Sayed; Ahmed G. Abo-Khalil; Hussein M. Maghrabie; Khaled Elsaid; Mohammad Ali Abdelkareem;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.123987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Hussein M. Maghrabie; Eckehard Specht; M. Attalla;Abstract In this study, experimental investigation has been conducted on fluid flow and heat transfer of rough mini-channels with rectangular cross sections. The mini-channel considered consists of twelve identical rectangular channels with 4 mm width, 8 mm height, and 80 mm length. Air is employed as the working fluid with Reynolds number varied from 1500 to 5000. Four mini-channels were examined with different values of relative surface roughness (ɛ) 1.6 ∗ 10−4, 3.45 ∗ 10−4, 6.15 ∗ 10−4, and 10.5 ∗ 10−4. The friction factor (f), average Nusselt number (Nu), pressure drop penalty factor (Ef), heat transfer enhancement factor (Ehn), and universal evaluation parameter (PEC) were evaluated to study fluid flow and heat transfer of rough mini-channels with rectangular cross sections. The results showed that increasing the Reynolds number (Re) of air passing through the rectangular rough mini-channel, increases the average Nusselt number (Nu) and the pressure drop penalty factor (Ef), while decreasing the friction factor (f) and the heat transfer enhancement factor (Ehn) which, has a great effect on the universal evaluation parameter (PEC) rather than the pressure drop penalty factor (Ef). Moreover, a correlation of the relative surface roughness (e) and the universal evaluation parameter (PEC) was obtained.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2016.01.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2016.01.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohamed Khalil; M. Attalla; H.E. Fawaz; Hussein M. Maghrabie;A computational study of cooling in-line array of heated obstacles simulating electronic components by jet impingement in cross-flow (JICF) has been investigated using RNG k-ε turbulence model. The jet position has been changed to impinge each obstacle consecutively at different jet-to-channel Reynolds number ratios, Rej/Rec = 1, 2, and 4. The main flow structure, the static pressure, local and average Nusselt numbers as well as the thermal enhancement factor have been investigated. The results show that there is a significant variation between the flow structures around an obstacle when subjected to JICF or CF. The friction factor for JICF is greater than that for cross-flow only (CF) by 88% at the first jet position and Rej/Rec = 4. The irregular distribution of local Nusselt number (Nu) on the impinged obstacle is moderated by increasing the Reynolds number ratios. Increasing Reynolds number ratio increases the average Nusselt number (Nu‾) of the downstream obstacles and decreases it for the upstream obstacles. The increment of Nu‾ for whole array for JICF than CF is about 26% at JP3 and Rej/Rec = 4. Moreover, the highest value of thermal enhancement factor is attained at JP3 and it equals 12% for Rej/Rec = 4.
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2016.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2016.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu