- home
- Advanced Search
- Energy Research
- engineering and technology
- Energy Research
- engineering and technology
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Francisco Gonzalez-Longatt; Manuel Burgos Payán; Javier Serrano González; Jesús Manuel Riquelme Santos;Abstract This paper presents a wind-resource atlas of Venezuela based on wind observations recorded from on-site meteorological stations. Meteorological datasets of 32 weather stations located over northern Venezuela are used in the development of the maps of three main regions in Venezuela: West, Central and East. Hourly observations of wind speed and direction at each anemometer mast, recorded during the period 2005–2007, have been analysed in order to define the statistical description of the wind resource in the studied area. This processed data along with information on elevation and roughness length is used to model the horizontal and vertical extrapolation of wind data and the estimation of the wind resource. An implementation of Mass-conservation Wind-Flow Model in OpenWind software is used to calculate the wind resource at each anemometer mast. A distance-squared interpolation method is proposed as the post-processing procedure and blending technique to create each map upon which a Venezuelan wind atlas is then built. Simulation results include two main wind-resource atlases obtained at 80 m height above ground: (i) a traditional map of mean wind speed for each direction; and (ii) a map of power density. Results show that the best wind-energy resources are located in the northern coastal area of Venezuela.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Netherlands, NorwayPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | MIGRATEEC| MIGRATEAuthors: Elyas Rakhshani; Arcadio Perilla; Jose L. Rueda Torres; Francisco M. Gonzalez-Longatt; +2 AuthorsElyas Rakhshani; Arcadio Perilla; Jose L. Rueda Torres; Francisco M. Gonzalez-Longatt; Thiago Batista Soeiro; Mart A. M. M. Van Der Meijden;handle: 11250/2727236
This paper presents different forms of Fast Active Power Injection (FAPI) control schemes for the analysis and development of different mitigation measures to address the frequency stability problem due to the growth of the penetration level of the Power Electronic Interfaced Generation (PEIG) in sustainable interconnected energy systems. Among the studied FAPI control schemes, two different approaches in the form of a derivative-based control and a virtual synchronous power (VSP) based control for wind turbine applications are also proposed. All schemes are attached to the PEIG represented by a generic model of wind turbines type 4. The derivative-based FAPI control is applied as an extension of the droop based control scheme, which is dependent on the measurement of the network frequency. By contrast, the proposed VSP-based FAPI is fed by the measurement of the active power deviation. Additionally, unlike existing approaches for virtual synchronous machines, which are characterized by high-order transfer functions, the proposed VSP-based FAPI is defined by a second-order transfer function, which can contribute to fast mitigation of the system primary frequency deviations during containment period. The Great Britain (GB) test system, for the Gone-Green planning scenario for the year 2030 (GG2030), is used to evaluate the effects of the proposed FAPI controllers on the dynamics of the system frequency within the frequency containment period. Thanks to proposed FAPI controllers, it is possible to reach up to 70% for the share of wind power generation without violating the threshold limits for frequency stability. For verification purposes, a full-scale wind turbine facilitated with each FAPI controller is tested in EMT real-time simulation environment. This paper presents different forms of Fast Active Power Injection (FAPI) control schemes for the analysis and development of different mitigation measures to address the frequency stability problem due to the growth of the penetration level of the Power Electronic Interfaced Generation (PEIG) in sustainable interconnected energy systems.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2020Full-Text: https://ieeexplore.ieee.org/document/9144273Data sources: Norwegian Open Research ArchivesUSN Open ArchiveArticle . 2020Full-Text: https://ieeexplore.ieee.org/document/9144273Data sources: USN Open ArchiveIEEE Open Access Journal of Power and EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefIEEE Open Access Journal of Power and EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oajpe.2020.3010224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 6 Powered bymore_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2020Full-Text: https://ieeexplore.ieee.org/document/9144273Data sources: Norwegian Open Research ArchivesUSN Open ArchiveArticle . 2020Full-Text: https://ieeexplore.ieee.org/document/9144273Data sources: USN Open ArchiveIEEE Open Access Journal of Power and EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefIEEE Open Access Journal of Power and EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oajpe.2020.3010224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 NorwayPublisher:MDPI AG Authors: Martha N. Acosta; Daniel Pettersen; Francisco Gonzalez-Longatt; Jaime Peredo Argos; +1 AuthorsMartha N. Acosta; Daniel Pettersen; Francisco Gonzalez-Longatt; Jaime Peredo Argos; Manuel A. Andrade;doi: 10.3390/en13133377
handle: 11250/2727331
The integration of renewable resources is quickly growing in the Nordic power system (NPS), and it has led to increasing challenges for the operation and control of the NPS. Nordic countries require that the first-generation power plants have a more flexible operation regime to overcomes power imbalances coming from fluctuations of the demand and supply. This paper assesses optimal frequency support of variable-speed hydropower plants installed in Telemark and Vestfold, Norway, considering future scenarios of NPS. The total kinetic energy of the NPS is expected to be significantly reduced in the future. This paper looks into the implementation of hydropower units with a variable-speed operation regime and battery energy storage systems (BESS), equipped with fast-active power controller (FAPC) technology, to provide fast frequency response after a system frequency disturbance. The frequency support was formulated as an optimization process; therefore, the parameter of the FAPC was optimally calculated for future scenarios of low inertia in NPS. Three main futures scenarios were developed for technology penetration in the Vestfold and Telemark area in Norway. The simulation results showed that the integration variable-speed hydropower units and BESS technologies improved the frequency response even in low-kinetic energy scenarios.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3377/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3377/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Peter Wall; Francisco Gonzalez-Longatt; Vladimir Terzija; Lei Ding;The method proposed in the procedure of the first step of the spectral clustering controlled islanding (SCCI) is actually equivalent to the application of slow coherency. The slow coherency method is very useful for ofiline analysis. However, the following two questions must be answered before slow coherency can be applied to identify suitable generator groups: 1) have the generators lost synchronism, or will they, i.e., is the separation of generator groups necessary? 2) How many generator groups should be formed? This means that there are distinct drawbacks when applying slow coherency online; however, the method can still be adapted to this purpose to a certain extent [1]. We think a better way is using an online algorithm to replace the slow coherency method [2], [3]. The drawbacks and limitations of the first step of the SCCI have been discussed in Section III-A.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2013.2290819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2013.2290819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Part of book or chapter of book 2012Publisher:IEEE Dimitar Bogdanov; Francisco Gonzalez-Longatt; Istvan Erlich; Walter Villa; Jose L. Rueda;This paper presents an application of the Mean-Variance Mapping Optimization (MVMO) algorithm to the identification of the parameters of Gaussian Mixture Model (GMM) representing variability of power system loads. The advantage of this approach is that different types of load distributions can be fairly represented as a convex combination of several normal distributions with respective means and standard deviation. The problem of obtaining various mixture components (weight, mean, and standard deviation) is formulated as a problem of identification and MVMO is used to provide an efficient solution in this paper. The performance of the proposed approach is demonstrated using two tests. Results indicate the MVMO approach is efficient to represented load models.
http://www.fglongatt... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenPart of book or chapter of book . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/is.2012.6335130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert http://www.fglongatt... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenPart of book or chapter of book . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/is.2012.6335130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Spain, Spain, NorwayPublisher:MDPI AG Harold R. Chamorro; Alvaro D. Orjuela-Cañón; David Ganger; Mattias Persson; Francisco Gonzalez-Longatt; Lazaro Alvarado-Barrios; Vijay K. Sood; Wilmar Martinez;handle: 11250/2727326 , 20.500.12412/4653
Frequency in power systems is a real-time information that shows the balance between generation and demand. Good system frequency observation is vital for system security and protection. This paper analyses the system frequency response following disturbances and proposes a data-driven approach for predicting it by using machine learning techniques like Nonlinear Auto-regressive (NAR) Neural Networks (NN) and Long Short Term Memory (LSTM) networks from simulated and measured Phasor Measurement Unit (PMU) data. The proposed method uses a horizon-window that reconstructs the frequency input time-series data in order to predict the frequency features such as Nadir. Simulated scenarios are based on the gradual inertia reduction by including non-synchronous generation into the Nordic 32 test system, whereas the PMU collected data is taken from different locations in the Nordic Power System (NPS). Several horizon-windows are experimented in order to observe an adequate margin of prediction. Scenarios considering noisy signals are also evaluated in order to provide a robustness index of predictability. Results show the proper performance of the method and the adequate level of prediction based on the Root Mean Squared Error (RMSE) index.
Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/2/151/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABrújula - Repositorio InstitucionalArticle . 2023License: CC BY NC NDData sources: Brújula - Repositorio Institucionaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10020151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/2/151/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABrújula - Repositorio InstitucionalArticle . 2023License: CC BY NC NDData sources: Brújula - Repositorio Institucionaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10020151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Other ORP type 2020 SpainPublisher:MDPI AG Authors: Andrés Peña Asensio; Francisco Gonzalez-Longatt; Santiago Arnaltes; Jose Luis Rodríguez-Amenedo;doi: 10.3390/en13061478
This paper presents a comprehensive analysis of the effect of the converter synchronizing methods on the contribution that Battery Energy Storage Systems (BESSs) can provide for the support of the inertial response of a power system. Solutions based on phase-locked loop (PLL) synchronization and virtual synchronous machine (VSM) synchronization without PLL are described and then compared by using time-domain simulations for an isolated microgrid (MG) case study. The simulation results showed that inertial response can be provided both with and without the use of a PLL. However, the behavior in the first moments of the inertia response differed. For the PLL-based solutions, the transient response was dominated by the low-level current controllers, which imposed fast under-damped oscillations, while the VSM systems presented a slower response resulting in a higher amount of energy exchanged and therefore a greater contribution to the support of the system inertial response. Moreover, it was demonstrated that PLL-based solutions with and without derivative components presented similar behavior, which significantly simplified the implementation of the PLL-based inertia emulation solutions. Finally, results showed that the contribution of the BESS using VSM solutions was limited by the effect of the VSM-emulated inertia parameters on the system stability, which reduced the emulated inertia margin compared to the PLL-based solutions.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1478/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 5 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1478/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 NetherlandsPublisher:MDPI AG Martha N. Acosta; Martha N. Acosta; Harold R. Chamorro; José Luis Rueda Torres; Manuel A. Andrade; Francisco Gonzalez-Longatt;doi: 10.3390/en14164834
The reactive power control mechanisms at the smart inverters will affect the voltage profile, active power losses and the cost of reactive power procurement in a different way. Therefore, this paper presents an assessment of the cost–benefit relationship obtained by enabling nine different reactive power control mechanisms at the smart inverters. The first eight reactive power control mechanisms are available in the literature and include the IEEE 1547−2018 standard requirements. The ninth control mechanism is an optimum reactive power control proposed in this paper. It is formulated to minimise the active power losses of the network and ensure the bus voltages and the reactive power of the smart inverter are within their allowable limits. The Vestfold and Telemark distribution network was implemented in DIgSILENT PowerFactory and used to evaluate the reactive power control mechanisms. The reactive power prices were taken from the default payment rate document of the National Grid. Simulation results demonstrate that the optimal reactive power control mechanism provides the best cost–benefit for the daily steady-state operation of the network.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4834/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 5 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4834/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ColombiaPublisher:MDPI AG Authors: Diego Larrahondo; Ricardo Moreno; Harold R. Chamorro; Francisco Gonzalez-Longatt;doi: 10.3390/en14154540
handle: 10614/13739
Today, the power system operation represents a challenge given the security and reliability requirements. Mathematical models are used to represent and solve operational and planning issues related with electric systems. Specifically, the AC optimal power flow (ACOPF) and the DC optimal power flow (DCOPF) are tools used for operational and planning purposes. The DCOPF versions correspond to lineal versions of the ACOPF. This is due to the fact that the power flow solution is often hard to obtain with the ACOPF considering all constraints. However, the simplifications use only active power without considering reactive power, voltage values and losses on transmission lines, which are crucial factors for power system operation, potentially leading to inaccurate results. This paper develops a detailed formulation for both DCOPF and ACOPF with multiple generation sources to provide a 24-h dispatching in order to compare the differences between the solutions with different scenarios under high penetration of wind power. The results indicate the DCOPF inaccuracies with respect to the complete solution provided by the ACOPF.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4540/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4540/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ColombiaPublisher:MDPI AG Authors: Sergio Cantillo-Luna; Ricardo Moreno-Chuquen; Francisco Gonzalez-Longatt; Harold R. Chamorro;doi: 10.3390/en15072389
handle: 10614/14696
The increased use of distributed energy resources, especially electrical energy storage systems (EESS), has led to greater flexibility and complexity in power grids, which has led to new challenges in the operation of these systems, with particular emphasis on frequency regulation. To this end, the transmission system operator in Great Britain has designed a control scheme known as Enhanced Frequency Response (EFR) that is especially attractive for its implementation in EESS. This paper proposes a Type-2 fuzzy control system that enables the provision of EFR service from a battery energy storage system in order to improve the state-of-charge (SoC) management while providing EFR service from operating scenarios during working and off-duty days. The performance of the proposed controller is compared with a conventional FLC and PID controllers with similar features. The results showed that in all scenarios, but especially under large frequency deviations, the proposed controller presents a better SoC management in comparison without neglecting the EFR service provision.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2389/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14696Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2389/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14696Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Francisco Gonzalez-Longatt; Manuel Burgos Payán; Javier Serrano González; Jesús Manuel Riquelme Santos;Abstract This paper presents a wind-resource atlas of Venezuela based on wind observations recorded from on-site meteorological stations. Meteorological datasets of 32 weather stations located over northern Venezuela are used in the development of the maps of three main regions in Venezuela: West, Central and East. Hourly observations of wind speed and direction at each anemometer mast, recorded during the period 2005–2007, have been analysed in order to define the statistical description of the wind resource in the studied area. This processed data along with information on elevation and roughness length is used to model the horizontal and vertical extrapolation of wind data and the estimation of the wind resource. An implementation of Mass-conservation Wind-Flow Model in OpenWind software is used to calculate the wind resource at each anemometer mast. A distance-squared interpolation method is proposed as the post-processing procedure and blending technique to create each map upon which a Venezuelan wind atlas is then built. Simulation results include two main wind-resource atlases obtained at 80 m height above ground: (i) a traditional map of mean wind speed for each direction; and (ii) a map of power density. Results show that the best wind-energy resources are located in the northern coastal area of Venezuela.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Netherlands, NorwayPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | MIGRATEEC| MIGRATEAuthors: Elyas Rakhshani; Arcadio Perilla; Jose L. Rueda Torres; Francisco M. Gonzalez-Longatt; +2 AuthorsElyas Rakhshani; Arcadio Perilla; Jose L. Rueda Torres; Francisco M. Gonzalez-Longatt; Thiago Batista Soeiro; Mart A. M. M. Van Der Meijden;handle: 11250/2727236
This paper presents different forms of Fast Active Power Injection (FAPI) control schemes for the analysis and development of different mitigation measures to address the frequency stability problem due to the growth of the penetration level of the Power Electronic Interfaced Generation (PEIG) in sustainable interconnected energy systems. Among the studied FAPI control schemes, two different approaches in the form of a derivative-based control and a virtual synchronous power (VSP) based control for wind turbine applications are also proposed. All schemes are attached to the PEIG represented by a generic model of wind turbines type 4. The derivative-based FAPI control is applied as an extension of the droop based control scheme, which is dependent on the measurement of the network frequency. By contrast, the proposed VSP-based FAPI is fed by the measurement of the active power deviation. Additionally, unlike existing approaches for virtual synchronous machines, which are characterized by high-order transfer functions, the proposed VSP-based FAPI is defined by a second-order transfer function, which can contribute to fast mitigation of the system primary frequency deviations during containment period. The Great Britain (GB) test system, for the Gone-Green planning scenario for the year 2030 (GG2030), is used to evaluate the effects of the proposed FAPI controllers on the dynamics of the system frequency within the frequency containment period. Thanks to proposed FAPI controllers, it is possible to reach up to 70% for the share of wind power generation without violating the threshold limits for frequency stability. For verification purposes, a full-scale wind turbine facilitated with each FAPI controller is tested in EMT real-time simulation environment. This paper presents different forms of Fast Active Power Injection (FAPI) control schemes for the analysis and development of different mitigation measures to address the frequency stability problem due to the growth of the penetration level of the Power Electronic Interfaced Generation (PEIG) in sustainable interconnected energy systems.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2020Full-Text: https://ieeexplore.ieee.org/document/9144273Data sources: Norwegian Open Research ArchivesUSN Open ArchiveArticle . 2020Full-Text: https://ieeexplore.ieee.org/document/9144273Data sources: USN Open ArchiveIEEE Open Access Journal of Power and EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefIEEE Open Access Journal of Power and EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oajpe.2020.3010224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 6 Powered bymore_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2020Full-Text: https://ieeexplore.ieee.org/document/9144273Data sources: Norwegian Open Research ArchivesUSN Open ArchiveArticle . 2020Full-Text: https://ieeexplore.ieee.org/document/9144273Data sources: USN Open ArchiveIEEE Open Access Journal of Power and EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefIEEE Open Access Journal of Power and EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/oajpe.2020.3010224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 NorwayPublisher:MDPI AG Authors: Martha N. Acosta; Daniel Pettersen; Francisco Gonzalez-Longatt; Jaime Peredo Argos; +1 AuthorsMartha N. Acosta; Daniel Pettersen; Francisco Gonzalez-Longatt; Jaime Peredo Argos; Manuel A. Andrade;doi: 10.3390/en13133377
handle: 11250/2727331
The integration of renewable resources is quickly growing in the Nordic power system (NPS), and it has led to increasing challenges for the operation and control of the NPS. Nordic countries require that the first-generation power plants have a more flexible operation regime to overcomes power imbalances coming from fluctuations of the demand and supply. This paper assesses optimal frequency support of variable-speed hydropower plants installed in Telemark and Vestfold, Norway, considering future scenarios of NPS. The total kinetic energy of the NPS is expected to be significantly reduced in the future. This paper looks into the implementation of hydropower units with a variable-speed operation regime and battery energy storage systems (BESS), equipped with fast-active power controller (FAPC) technology, to provide fast frequency response after a system frequency disturbance. The frequency support was formulated as an optimization process; therefore, the parameter of the FAPC was optimally calculated for future scenarios of low inertia in NPS. Three main futures scenarios were developed for technology penetration in the Vestfold and Telemark area in Norway. The simulation results showed that the integration variable-speed hydropower units and BESS technologies improved the frequency response even in low-kinetic energy scenarios.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3377/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3377/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Peter Wall; Francisco Gonzalez-Longatt; Vladimir Terzija; Lei Ding;The method proposed in the procedure of the first step of the spectral clustering controlled islanding (SCCI) is actually equivalent to the application of slow coherency. The slow coherency method is very useful for ofiline analysis. However, the following two questions must be answered before slow coherency can be applied to identify suitable generator groups: 1) have the generators lost synchronism, or will they, i.e., is the separation of generator groups necessary? 2) How many generator groups should be formed? This means that there are distinct drawbacks when applying slow coherency online; however, the method can still be adapted to this purpose to a certain extent [1]. We think a better way is using an online algorithm to replace the slow coherency method [2], [3]. The drawbacks and limitations of the first step of the SCCI have been discussed in Section III-A.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2013.2290819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2013.2290819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Part of book or chapter of book 2012Publisher:IEEE Dimitar Bogdanov; Francisco Gonzalez-Longatt; Istvan Erlich; Walter Villa; Jose L. Rueda;This paper presents an application of the Mean-Variance Mapping Optimization (MVMO) algorithm to the identification of the parameters of Gaussian Mixture Model (GMM) representing variability of power system loads. The advantage of this approach is that different types of load distributions can be fairly represented as a convex combination of several normal distributions with respective means and standard deviation. The problem of obtaining various mixture components (weight, mean, and standard deviation) is formulated as a problem of identification and MVMO is used to provide an efficient solution in this paper. The performance of the proposed approach is demonstrated using two tests. Results indicate the MVMO approach is efficient to represented load models.
http://www.fglongatt... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenPart of book or chapter of book . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/is.2012.6335130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert http://www.fglongatt... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenPart of book or chapter of book . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/is.2012.6335130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Spain, Spain, NorwayPublisher:MDPI AG Harold R. Chamorro; Alvaro D. Orjuela-Cañón; David Ganger; Mattias Persson; Francisco Gonzalez-Longatt; Lazaro Alvarado-Barrios; Vijay K. Sood; Wilmar Martinez;handle: 11250/2727326 , 20.500.12412/4653
Frequency in power systems is a real-time information that shows the balance between generation and demand. Good system frequency observation is vital for system security and protection. This paper analyses the system frequency response following disturbances and proposes a data-driven approach for predicting it by using machine learning techniques like Nonlinear Auto-regressive (NAR) Neural Networks (NN) and Long Short Term Memory (LSTM) networks from simulated and measured Phasor Measurement Unit (PMU) data. The proposed method uses a horizon-window that reconstructs the frequency input time-series data in order to predict the frequency features such as Nadir. Simulated scenarios are based on the gradual inertia reduction by including non-synchronous generation into the Nordic 32 test system, whereas the PMU collected data is taken from different locations in the Nordic Power System (NPS). Several horizon-windows are experimented in order to observe an adequate margin of prediction. Scenarios considering noisy signals are also evaluated in order to provide a robustness index of predictability. Results show the proper performance of the method and the adequate level of prediction based on the Root Mean Squared Error (RMSE) index.
Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/2/151/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABrújula - Repositorio InstitucionalArticle . 2023License: CC BY NC NDData sources: Brújula - Repositorio Institucionaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10020151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electronics arrow_drop_down ElectronicsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2079-9292/10/2/151/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTABrújula - Repositorio InstitucionalArticle . 2023License: CC BY NC NDData sources: Brújula - Repositorio Institucionaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics10020151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Other ORP type 2020 SpainPublisher:MDPI AG Authors: Andrés Peña Asensio; Francisco Gonzalez-Longatt; Santiago Arnaltes; Jose Luis Rodríguez-Amenedo;doi: 10.3390/en13061478
This paper presents a comprehensive analysis of the effect of the converter synchronizing methods on the contribution that Battery Energy Storage Systems (BESSs) can provide for the support of the inertial response of a power system. Solutions based on phase-locked loop (PLL) synchronization and virtual synchronous machine (VSM) synchronization without PLL are described and then compared by using time-domain simulations for an isolated microgrid (MG) case study. The simulation results showed that inertial response can be provided both with and without the use of a PLL. However, the behavior in the first moments of the inertia response differed. For the PLL-based solutions, the transient response was dominated by the low-level current controllers, which imposed fast under-damped oscillations, while the VSM systems presented a slower response resulting in a higher amount of energy exchanged and therefore a greater contribution to the support of the system inertial response. Moreover, it was demonstrated that PLL-based solutions with and without derivative components presented similar behavior, which significantly simplified the implementation of the PLL-based inertia emulation solutions. Finally, results showed that the contribution of the BESS using VSM solutions was limited by the effect of the VSM-emulated inertia parameters on the system stability, which reduced the emulated inertia margin compared to the PLL-based solutions.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1478/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 5 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1478/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 NetherlandsPublisher:MDPI AG Martha N. Acosta; Martha N. Acosta; Harold R. Chamorro; José Luis Rueda Torres; Manuel A. Andrade; Francisco Gonzalez-Longatt;doi: 10.3390/en14164834
The reactive power control mechanisms at the smart inverters will affect the voltage profile, active power losses and the cost of reactive power procurement in a different way. Therefore, this paper presents an assessment of the cost–benefit relationship obtained by enabling nine different reactive power control mechanisms at the smart inverters. The first eight reactive power control mechanisms are available in the literature and include the IEEE 1547−2018 standard requirements. The ninth control mechanism is an optimum reactive power control proposed in this paper. It is formulated to minimise the active power losses of the network and ensure the bus voltages and the reactive power of the smart inverter are within their allowable limits. The Vestfold and Telemark distribution network was implemented in DIgSILENT PowerFactory and used to evaluate the reactive power control mechanisms. The reactive power prices were taken from the default payment rate document of the National Grid. Simulation results demonstrate that the optimal reactive power control mechanism provides the best cost–benefit for the daily steady-state operation of the network.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4834/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 5 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4834/pdfData sources: Multidisciplinary Digital Publishing InstituteDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ColombiaPublisher:MDPI AG Authors: Diego Larrahondo; Ricardo Moreno; Harold R. Chamorro; Francisco Gonzalez-Longatt;doi: 10.3390/en14154540
handle: 10614/13739
Today, the power system operation represents a challenge given the security and reliability requirements. Mathematical models are used to represent and solve operational and planning issues related with electric systems. Specifically, the AC optimal power flow (ACOPF) and the DC optimal power flow (DCOPF) are tools used for operational and planning purposes. The DCOPF versions correspond to lineal versions of the ACOPF. This is due to the fact that the power flow solution is often hard to obtain with the ACOPF considering all constraints. However, the simplifications use only active power without considering reactive power, voltage values and losses on transmission lines, which are crucial factors for power system operation, potentially leading to inaccurate results. This paper develops a detailed formulation for both DCOPF and ACOPF with multiple generation sources to provide a 24-h dispatching in order to compare the differences between the solutions with different scenarios under high penetration of wind power. The results indicate the DCOPF inaccuracies with respect to the complete solution provided by the ACOPF.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4540/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4540/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ColombiaPublisher:MDPI AG Authors: Sergio Cantillo-Luna; Ricardo Moreno-Chuquen; Francisco Gonzalez-Longatt; Harold R. Chamorro;doi: 10.3390/en15072389
handle: 10614/14696
The increased use of distributed energy resources, especially electrical energy storage systems (EESS), has led to greater flexibility and complexity in power grids, which has led to new challenges in the operation of these systems, with particular emphasis on frequency regulation. To this end, the transmission system operator in Great Britain has designed a control scheme known as Enhanced Frequency Response (EFR) that is especially attractive for its implementation in EESS. This paper proposes a Type-2 fuzzy control system that enables the provision of EFR service from a battery energy storage system in order to improve the state-of-charge (SoC) management while providing EFR service from operating scenarios during working and off-duty days. The performance of the proposed controller is compared with a conventional FLC and PID controllers with similar features. The results showed that in all scenarios, but especially under large frequency deviations, the proposed controller presents a better SoC management in comparison without neglecting the EFR service provision.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2389/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14696Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2389/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14696Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu