- home
- Advanced Search
- Energy Research
- engineering and technology
- Energy Research
- engineering and technology
description Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:Swiss Chemical Society Authors: Kantnerova, Kristyna; id_orcid0000-0001-6259-3225; Tuzson, Béla;Emmenegger, Lukas;
Bernasconi, Stefano M.; id_orcid0000-0001-7672-8856; +1 AuthorsEmmenegger, Lukas
Emmenegger, Lukas in OpenAIREKantnerova, Kristyna; id_orcid0000-0001-6259-3225; Tuzson, Béla;Emmenegger, Lukas;
Bernasconi, Stefano M.; id_orcid0000-0001-7672-8856;Emmenegger, Lukas
Emmenegger, Lukas in OpenAIREMohn, Joachim;
Mohn, Joachim
Mohn, Joachim in OpenAIREpmid: 30975249
Nitrous oxide, N2O, is the environmentally most relevant constituent of the biogeochemical nitrogen cycle. Human activities, e.g. the agricultural use of mineral fertilizers, accelerate nitrogen transformations, leading to higher emissions of this strong greenhouse gas. Investigating the stable isotopic composition of N2O provides a better understanding of formation mechanisms to disentangle its variable source and sink processes. Mid-infrared (mid-IR) laser spectroscopy is a highly attractive technique to analyze N2O isotopocules based on their specific ro-vibrational absorption characteristics. Specifically, quantum cascade laser absorption spectroscopy (QCLAS) in combination with preconcentration has shown to be powerful for simultaneous and high-precision analysis of the main N2O isotopocules. Recently, in the scope of my PhD project, we have been advancing this analytical technique for the analysis of the very rare doubly substituted N2O isotopic species 15N14N18O, 14N15N18O, and 15N15N16O, also known as clumped isotopes. Currently, we are investigating the potential of these novel isotopic tracers to track the complex N2O production and consumption pathways. Improved understanding of the nitrogen cycle will be a major step towards N2O emission reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2533/chimia.2019.232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2533/chimia.2019.232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2008Embargo end date: 14 Oct 2024Publisher:Elsevier BV Authors:Mohn, J;
Szidat, Sönke;
Fellner, J;Szidat, Sönke
Szidat, Sönke in OpenAIRERechberger, H;
+3 AuthorsRechberger, H
Rechberger, H in OpenAIREMohn, J;
Szidat, Sönke;
Fellner, J;Szidat, Sönke
Szidat, Sönke in OpenAIRERechberger, H;
Quartier, R;Rechberger, H
Rechberger, H in OpenAIREBuchmann, B;
Buchmann, B
Buchmann, B in OpenAIREEmmenegger, L;
Emmenegger, L
Emmenegger, L in OpenAIREpmid: 18164616
A field application of the radiocarbon ((14)C) method was developed to determine the ratio of biogenic vs. fossil CO(2) emissions from waste-to-energy plants (WTE). This methodology can be used to assign the Kyoto relevant share of fossil CO(2) emissions, which is highly relevant for emission budgets and emission trading. Furthermore, heat and electricity produced by waste incinerators might be labelled depending on the fossil or biogenic nature of the primary energy source. The method development includes representative on-site CO(2) absorption and subsequent release in the laboratory. Furthermore, a reference value for the (14)C content of pure biogenic waste (f(M,bio)) was determined as 1.130+/-0.038. Gas samples for (14)CO(2) analysis were taken at three WTEs during one month each. Results were compared to an alternative approach based on mass and energy balances. Both methods were in excellent agreement and indicated a fraction of biogenic CO(2) slightly above 50%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.11.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 137 citations 137 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2007.11.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu