- home
- Advanced Search
Filters
Clear All- Energy Research
- engineering and technology
- 9. Industry and infrastructure
- Sensors
- Energy Research
- engineering and technology
- 9. Industry and infrastructure
- Sensors
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Colombia, Spain, ColombiaPublisher:MDPI AG Authors: Wilson Arrubla-Hoyos; Adelaida Ojeda-Beltrán; Andrés Solano-Barliza; Geovanny Rambauth-Ibarra; +6 AuthorsWilson Arrubla-Hoyos; Adelaida Ojeda-Beltrán; Andrés Solano-Barliza; Geovanny Rambauth-Ibarra; Alexis Barrios-Ulloa; Dora Cama-Pinto; Francisco Manuel Arrabal-Campos; Juan Antonio Martínez-Lao; Alejandro Cama-Pinto; Francisco Manzano-Agugliaro;doi: 10.3390/s22197295
pmid: 36236394
pmc: PMC9571140
handle: 10481/77760 , 10835/14024 , 11323/9613
doi: 10.3390/s22197295
pmid: 36236394
pmc: PMC9571140
handle: 10481/77760 , 10835/14024 , 11323/9613
The growing global demand for food and the environmental impact caused by agriculture have made this activity increasingly dependent on electronics, information technology, and telecommunications technologies. In Colombia, agriculture is of great importance not only as a commercial activity, but also as a source of food and employment. However, the concept of smart agriculture has not been widely applied in this country, resulting in the high production of various types of crops due to the planting of large areas of land, rather than optimization of the processes involved in the activity. Due to its technical characteristics and the radio spectrum considered in its deployment, 5G can be seen as one of the technologies that could generate the greatest benefits for the Colombian agricultural sector, especially in the most remote rural areas, which currently lack mobile network coverage. This article provides an overview of the current 5G technology landscape in Colombia and presents examples of possible 5G/IoT applications that could be developed in Colombian fields. The results show that 5G could facilitate the implementation of the smart farm in Colombia, improving current production and efficiency. It is useful when designing 5G implementation plans and strategies, since it categorizes crops by regions and products. This is based on budget availability, population density, and regional development plans, among others.
REDICUC - Repositori... arrow_drop_down REDICUC - Repositorio Universidad de La CostaArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/11323/9613Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2022License: CC BY NC NDFull-Text: https://www.mdpi.com/1424-8220/22/19/7295Repositorio Institucional Universidad de GranadaArticle . 2022License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22197295&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert REDICUC - Repositori... arrow_drop_down REDICUC - Repositorio Universidad de La CostaArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/11323/9613Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2022License: CC BY NC NDFull-Text: https://www.mdpi.com/1424-8220/22/19/7295Repositorio Institucional Universidad de GranadaArticle . 2022License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22197295&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Ireland, United KingdomPublisher:MDPI AG Publicly fundedFunded by:SFI | Confirm Centre for Smart ..., EC | SMART 4.0SFI| Confirm Centre for Smart Manufacturing ,EC| SMART 4.0Md. Noor-A-Rahim; Jobish John; Fadhil Firyaguna; Hafiz Husnain Raza Sherazi; Sergii Kushch; Aswathi Vijayan; Eoin O’Connell; Dirk Pesch; Brendan O’Flynn; William O’Brien; Martin Hayes; Eddie Armstrong;Smart manufacturing is a vision and major driver for change in today’s industry. The goal of smart manufacturing is to optimize manufacturing processes through constantly monitoring, controlling, and adapting processes towards more efficient and personalised manufacturing. This requires and relies on technologies for connected machines incorporating a variety of computation, sensing, actuation, and machine to machine communications modalities. As such, understanding the change towards smart manufacturing requires knowledge of the enabling technologies, their applications in real world scenarios and the communication protocols and their performance to meet application requirements. Particularly, wireless communication is becoming an integral part of modern smart manufacturing and is expected to play an important role in achieving the goals of smart manufacturing. This paper presents an extensive review of wireless communication protocols currently applied in manufacturing environments and provides a comprehensive review of the associated use cases whilst defining their expected impact on the future of smart manufacturing. Based on the review, we point out a number of open challenges and directions for future research in wireless communication technologies for smart manufacturing.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/73/pdfData sources: Multidisciplinary Digital Publishing InstituteNewcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/298658Data sources: Bielefeld Academic Search Engine (BASE)University of Limerick Research RepositoryArticle . 2022License: CC BY NC SAData sources: University of Limerick Research Repositoryhttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/73/pdfData sources: Multidisciplinary Digital Publishing InstituteNewcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/298658Data sources: Bielefeld Academic Search Engine (BASE)University of Limerick Research RepositoryArticle . 2022License: CC BY NC SAData sources: University of Limerick Research Repositoryhttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:MDPI AG Authors: Robert Strong; John Thomas Wynn; James R. Lindner; Karissa Palmer;The study sought to: (1) evaluate agriculturalists’ characteristics as adopters of IoT smart agriculture technologies, (2) evaluate traits fostering innovation adoption, (3) evaluate the cycle of IoT smart agriculture adoption, and, lastly, (4) discern attributes and barriers of information communication. Researchers utilized a survey design to develop an instrument composed of eight adoption constructs and one personal characteristic construct and distributed it to agriculturalists at an agricultural exposition in Rio Grande do Sul. Three-hundred-forty-four (n = 344) agriculturalists responded to the data collection instrument. Adopter characteristics of agriculturalists were educated, higher consciousness of social status, larger understanding of technology use, and more likely identified as opinion leaders in communities. Innovation traits advantageous to IoT adoption regarding smart agriculture innovations were: (a) simplistic, (b) easily communicated to a targeted audience, (c) socially accepted, and (d) larger degrees of functionality. Smart agriculture innovation’s elevated levels of observability and compatibility coupled with the innovation’s low complexity were the diffusion elements predicting agriculturalists’ adoption. Agriculturalists’ beliefs in barriers to adopting IoT innovations were excessive complexity and minimal compatibility. Practitioners or change agents should promote IoT smart agriculture technologies to opinion leaders, reduce the innovation’s complexity, and amplify educational opportunities for technologies. The existing sum of IoT smart agriculture adoption literature with stakeholders and actors is descriptive and limited, which constitutes this inquiry as unique.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6833/pdfData sources: Multidisciplinary Digital Publishing InstituteTexas A&M University Digital RepositoryArticle . 2022License: CC BY NDFull-Text: https://hdl.handle.net/1969.1/197597Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6833/pdfData sources: Multidisciplinary Digital Publishing InstituteTexas A&M University Digital RepositoryArticle . 2022License: CC BY NDFull-Text: https://hdl.handle.net/1969.1/197597Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Tan Duy Le; Mengmeng Ge; Adnan Anwar; Seng W. Loke; Razvan Beuran; Robin Doss; Yasuo Tan;The smart grid is one of the core technologies that enable sustainable economic and social developments. In recent years, various cyber attacks have targeted smart grid systems, which have led to severe, harmful consequences. It would be challenging to build a real smart grid system for cybersecurity experimentation and validation purposes. Hence, analytical techniques, with simulations, can be considered as a practical solution to make smart grid cybersecurity experimentation possible. This paper first provides a literature review on the current state-of-the-art in smart grid attack analysis. We then apply graphical security modeling techniques to design and implement a Cyber Attack Analysis Framework for Smart Grids, named GridAttackAnalyzer. A case study with various attack scenarios involving Internet of Things (IoT) devices is conducted to validate the proposed framework and demonstrate its use. The functionality and user evaluations of GridAttackAnalyzer are also carried out, and the evaluation results show that users have a satisfying experience with the usability of GridAttackAnalyzer. Our modular and extensible framework can serve multiple purposes for research, cybersecurity training, and security evaluation in smart grids.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/13/4795/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22134795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/13/4795/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22134795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:MDPI AG Funded by:UKRI | Unlocking Potentials of M...UKRI| Unlocking Potentials of MIMO Full-duplex Radios for Heterogeneous Networks (UPFRONT)Shengchao Shi; Guangxia Li; Kang An; Bin Gao; Gan Zheng;This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint.
Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2025/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2025/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Bassam Zafar; Sami Ben Slama;The Energy Internet (EI) and Smart Grid 2.0 (SG 2.0) concepts are potential challenges in industry and research. The purpose of SG 2.0 and EI is to automate innovative power grid operations. To move from Distribution Network Operators (DSO) to consumer-centric distributed power grid management, the blockchain and smart contracts are applicable. Blockchain technology and integrated SGs will present challenges, limiting the deployment of Distributed Energy Resources (DERs). This review looks at the decentralization of the Smart Grid 2.0 using blockchain technology. Energy trading has increased due to access to distributed energy sources and electricity producers who can financially export surplus fuels. The energy trading system successfully combines energy from multiple sources to ensure consistent and optimal use of available resources and better facilities for energy users. Peer-to-peer (P2P) energy trading is a common field of study that presents some administrative and technical difficulties. This article provides a general overview of P2P energy exchange. It discusses how blockchain can improve transparency and overall performance, including the degree of decentralization, scalability, and device reliability. The research is extended to examine unresolved issues and potential directions for P2P blockchain-based energy sharing in the future. In fact, this paper also demonstrates the importance of blockchain in future smart grid activities and its blockchain-based applications. The study also briefly examines the issues associated with blockchain integration, ensuring the decentralized, secure and scalable operation of autonomous electric grids in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2021Embargo end date: 01 Jan 2021 TurkeyPublisher:MDPI AG Authors: Muhammad Shahid Iqbal; Yalcin Sadi; Sinem Coleri;pmid: 34640919
pmc: PMC8512360
Wireless powered communication networks (WPCNs) will be a major enabler of massive machine type communications (MTCs), which is a major service domain for 5G and beyond systems. These MTC networks will be deployed by using low-power transceivers and a very limited set of transmission configurations. We investigate a novel minimum length scheduling problem for multi-cell full-duplex wireless powered communication networks to determine the optimal power control and scheduling for constant rate transmission model. The formulated optimization problem is combinatorial in nature and, thus, difficult to solve for the global optimum. As a solution strategy, first, we decompose the problem into the power control problem (PCP) and scheduling problem. For the PCP, we propose the optimal polynomial time algorithm based on the evaluation of Perron–Frobenius conditions. For the scheduling problem, we propose a heuristic algorithm that aims to maximize the number of concurrently transmitting users by maximizing the allowable interference on each user without violating the signal-to-noise-ratio (SNR) requirements. Through extensive simulations, we demonstrate a 50% reduction in the schedule length by using the proposed algorithm in comparison to unscheduled concurrent transmissions.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/19/6599/pdfData sources: Multidisciplinary Digital Publishing InstituteKadir Has University Academic RepositoryArticle . 2021Data sources: Kadir Has University Academic RepositoryAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık Arşivihttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteKoç University Suna Kıraç Library’ Digital CollectionsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21196599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/19/6599/pdfData sources: Multidisciplinary Digital Publishing InstituteKadir Has University Academic RepositoryArticle . 2021Data sources: Kadir Has University Academic RepositoryAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık Arşivihttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteKoç University Suna Kıraç Library’ Digital CollectionsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21196599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sami Saeed Binyamin; Sami Ben Slama;Multi-Agent Systems (MAS) have been seen as an attractive area of research for civil engineering professionals to subdivide complex issues. Based on the assignment’s history, nearby agents, and objective, the agent intended to take the appropriate action to complete the task. MAS models complex systems, smart grids, and computer networks. MAS has problems with agent coordination, security, and work distribution despite its use. This paper reviews MAS definitions, attributes, applications, issues, and communications. For this reason, MASs have drawn interest from computer science and civil engineering experts to solve complex difficulties by subdividing them into smaller assignments. Agents have individual responsibilities. Each agent selects the best action based on its activity history, interactions with neighbors, and purpose. MAS uses the modeling of complex systems, smart grids, and computer networks. Despite their extensive use, MAS still confronts agent coordination, security, and work distribution challenges. This study examines MAS’s definitions, characteristics, applications, issues, communications, and evaluation, as well as the classification of MAS applications and difficulties, plus research references. This paper should be a helpful resource for MAS researchers and practitioners. MAS in controlling smart grids, including energy management, energy marketing, pricing, energy scheduling, reliability, network security, fault handling capability, agent-to-agent communication, SG-electrical cars, SG-building energy systems, and soft grids, have been examined. More than 100 MAS-based smart grid control publications have been reviewed, categorized, and compiled.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Vinay Chamola; Tejasvi Alladi; Sergei A. Kozlov; Joel J. P. C. Rodrigues; Joel J. P. C. Rodrigues;With the integration of Wireless Sensor Networks and the Internet of Things, the smart grid is being projected as a solution for the challenges regarding electricity supply in the future. However, security and privacy issues in the consumption and trading of electricity data pose serious challenges in the adoption of the smart grid. To address these challenges, blockchain technology is being researched for applicability in the smart grid. In this paper, important application areas of blockchain in the smart grid are discussed. One use case of each area is discussed in detail, suggesting a suitable blockchain architecture, a sample block structure and the potential blockchain technicalities employed in it. The blockchain can be used for peer-to-peer energy trading, where a credit-based payment scheme can enhance the energy trading process. Efficient data aggregation schemes based on the blockchain technology can be used to overcome the challenges related to privacy and security in the grid. Energy distribution systems can also use blockchain to remotely control energy flow to a particular area by monitoring the usage statistics of that area. Further, blockchain-based frameworks can also help in the diagnosis and maintenance of smart grid equipment. We also discuss several commercial implementations of blockchain in the smart grid. Finally, various challenges to be addressed for integrating these two technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19224862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 212 citations 212 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19224862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Spain, United StatesPublisher:MDPI AG Authors: Hernández Callejo, Luis; Baladrón García, Carlos; Aguiar Pérez, Javier Manuel; Calavia, Lorena; +5 AuthorsHernández Callejo, Luis; Baladrón García, Carlos; Aguiar Pérez, Javier Manuel; Calavia, Lorena; Carro Martínez, Belén; Sánchez Esguevillas, Antonio Javier; Cook, Diane J.; Chinarro, David; Gómez Sanz, Jorge;doi: 10.3390/s120911571
handle: 20.500.14352/43287
One of the main challenges of today’s society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.
Sensors arrow_drop_down SensorsOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1424-8220/12/9/11571/pdfData sources: Multidisciplinary Digital Publishing InstituteWashington State University: Research ExchangeArticle . 2012License: CC BYFull-Text: https://doi.org/10.3390/s120911571Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s120911571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1424-8220/12/9/11571/pdfData sources: Multidisciplinary Digital Publishing InstituteWashington State University: Research ExchangeArticle . 2012License: CC BYFull-Text: https://doi.org/10.3390/s120911571Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s120911571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Colombia, Spain, ColombiaPublisher:MDPI AG Authors: Wilson Arrubla-Hoyos; Adelaida Ojeda-Beltrán; Andrés Solano-Barliza; Geovanny Rambauth-Ibarra; +6 AuthorsWilson Arrubla-Hoyos; Adelaida Ojeda-Beltrán; Andrés Solano-Barliza; Geovanny Rambauth-Ibarra; Alexis Barrios-Ulloa; Dora Cama-Pinto; Francisco Manuel Arrabal-Campos; Juan Antonio Martínez-Lao; Alejandro Cama-Pinto; Francisco Manzano-Agugliaro;doi: 10.3390/s22197295
pmid: 36236394
pmc: PMC9571140
handle: 10481/77760 , 10835/14024 , 11323/9613
doi: 10.3390/s22197295
pmid: 36236394
pmc: PMC9571140
handle: 10481/77760 , 10835/14024 , 11323/9613
The growing global demand for food and the environmental impact caused by agriculture have made this activity increasingly dependent on electronics, information technology, and telecommunications technologies. In Colombia, agriculture is of great importance not only as a commercial activity, but also as a source of food and employment. However, the concept of smart agriculture has not been widely applied in this country, resulting in the high production of various types of crops due to the planting of large areas of land, rather than optimization of the processes involved in the activity. Due to its technical characteristics and the radio spectrum considered in its deployment, 5G can be seen as one of the technologies that could generate the greatest benefits for the Colombian agricultural sector, especially in the most remote rural areas, which currently lack mobile network coverage. This article provides an overview of the current 5G technology landscape in Colombia and presents examples of possible 5G/IoT applications that could be developed in Colombian fields. The results show that 5G could facilitate the implementation of the smart farm in Colombia, improving current production and efficiency. It is useful when designing 5G implementation plans and strategies, since it categorizes crops by regions and products. This is based on budget availability, population density, and regional development plans, among others.
REDICUC - Repositori... arrow_drop_down REDICUC - Repositorio Universidad de La CostaArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/11323/9613Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2022License: CC BY NC NDFull-Text: https://www.mdpi.com/1424-8220/22/19/7295Repositorio Institucional Universidad de GranadaArticle . 2022License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22197295&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert REDICUC - Repositori... arrow_drop_down REDICUC - Repositorio Universidad de La CostaArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/11323/9613Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2022License: CC BY NC NDFull-Text: https://www.mdpi.com/1424-8220/22/19/7295Repositorio Institucional Universidad de GranadaArticle . 2022License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22197295&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Ireland, United KingdomPublisher:MDPI AG Publicly fundedFunded by:SFI | Confirm Centre for Smart ..., EC | SMART 4.0SFI| Confirm Centre for Smart Manufacturing ,EC| SMART 4.0Md. Noor-A-Rahim; Jobish John; Fadhil Firyaguna; Hafiz Husnain Raza Sherazi; Sergii Kushch; Aswathi Vijayan; Eoin O’Connell; Dirk Pesch; Brendan O’Flynn; William O’Brien; Martin Hayes; Eddie Armstrong;Smart manufacturing is a vision and major driver for change in today’s industry. The goal of smart manufacturing is to optimize manufacturing processes through constantly monitoring, controlling, and adapting processes towards more efficient and personalised manufacturing. This requires and relies on technologies for connected machines incorporating a variety of computation, sensing, actuation, and machine to machine communications modalities. As such, understanding the change towards smart manufacturing requires knowledge of the enabling technologies, their applications in real world scenarios and the communication protocols and their performance to meet application requirements. Particularly, wireless communication is becoming an integral part of modern smart manufacturing and is expected to play an important role in achieving the goals of smart manufacturing. This paper presents an extensive review of wireless communication protocols currently applied in manufacturing environments and provides a comprehensive review of the associated use cases whilst defining their expected impact on the future of smart manufacturing. Based on the review, we point out a number of open challenges and directions for future research in wireless communication technologies for smart manufacturing.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/73/pdfData sources: Multidisciplinary Digital Publishing InstituteNewcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/298658Data sources: Bielefeld Academic Search Engine (BASE)University of Limerick Research RepositoryArticle . 2022License: CC BY NC SAData sources: University of Limerick Research Repositoryhttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/73/pdfData sources: Multidisciplinary Digital Publishing InstituteNewcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/298658Data sources: Bielefeld Academic Search Engine (BASE)University of Limerick Research RepositoryArticle . 2022License: CC BY NC SAData sources: University of Limerick Research Repositoryhttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2023License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:MDPI AG Authors: Robert Strong; John Thomas Wynn; James R. Lindner; Karissa Palmer;The study sought to: (1) evaluate agriculturalists’ characteristics as adopters of IoT smart agriculture technologies, (2) evaluate traits fostering innovation adoption, (3) evaluate the cycle of IoT smart agriculture adoption, and, lastly, (4) discern attributes and barriers of information communication. Researchers utilized a survey design to develop an instrument composed of eight adoption constructs and one personal characteristic construct and distributed it to agriculturalists at an agricultural exposition in Rio Grande do Sul. Three-hundred-forty-four (n = 344) agriculturalists responded to the data collection instrument. Adopter characteristics of agriculturalists were educated, higher consciousness of social status, larger understanding of technology use, and more likely identified as opinion leaders in communities. Innovation traits advantageous to IoT adoption regarding smart agriculture innovations were: (a) simplistic, (b) easily communicated to a targeted audience, (c) socially accepted, and (d) larger degrees of functionality. Smart agriculture innovation’s elevated levels of observability and compatibility coupled with the innovation’s low complexity were the diffusion elements predicting agriculturalists’ adoption. Agriculturalists’ beliefs in barriers to adopting IoT innovations were excessive complexity and minimal compatibility. Practitioners or change agents should promote IoT smart agriculture technologies to opinion leaders, reduce the innovation’s complexity, and amplify educational opportunities for technologies. The existing sum of IoT smart agriculture adoption literature with stakeholders and actors is descriptive and limited, which constitutes this inquiry as unique.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6833/pdfData sources: Multidisciplinary Digital Publishing InstituteTexas A&M University Digital RepositoryArticle . 2022License: CC BY NDFull-Text: https://hdl.handle.net/1969.1/197597Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6833/pdfData sources: Multidisciplinary Digital Publishing InstituteTexas A&M University Digital RepositoryArticle . 2022License: CC BY NDFull-Text: https://hdl.handle.net/1969.1/197597Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Tan Duy Le; Mengmeng Ge; Adnan Anwar; Seng W. Loke; Razvan Beuran; Robin Doss; Yasuo Tan;The smart grid is one of the core technologies that enable sustainable economic and social developments. In recent years, various cyber attacks have targeted smart grid systems, which have led to severe, harmful consequences. It would be challenging to build a real smart grid system for cybersecurity experimentation and validation purposes. Hence, analytical techniques, with simulations, can be considered as a practical solution to make smart grid cybersecurity experimentation possible. This paper first provides a literature review on the current state-of-the-art in smart grid attack analysis. We then apply graphical security modeling techniques to design and implement a Cyber Attack Analysis Framework for Smart Grids, named GridAttackAnalyzer. A case study with various attack scenarios involving Internet of Things (IoT) devices is conducted to validate the proposed framework and demonstrate its use. The functionality and user evaluations of GridAttackAnalyzer are also carried out, and the evaluation results show that users have a satisfying experience with the usability of GridAttackAnalyzer. Our modular and extensible framework can serve multiple purposes for research, cybersecurity training, and security evaluation in smart grids.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/13/4795/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22134795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/13/4795/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22134795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:MDPI AG Funded by:UKRI | Unlocking Potentials of M...UKRI| Unlocking Potentials of MIMO Full-duplex Radios for Heterogeneous Networks (UPFRONT)Shengchao Shi; Guangxia Li; Kang An; Bin Gao; Gan Zheng;This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint.
Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2025/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1424-8220/17/9/2025/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17092025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Bassam Zafar; Sami Ben Slama;The Energy Internet (EI) and Smart Grid 2.0 (SG 2.0) concepts are potential challenges in industry and research. The purpose of SG 2.0 and EI is to automate innovative power grid operations. To move from Distribution Network Operators (DSO) to consumer-centric distributed power grid management, the blockchain and smart contracts are applicable. Blockchain technology and integrated SGs will present challenges, limiting the deployment of Distributed Energy Resources (DERs). This review looks at the decentralization of the Smart Grid 2.0 using blockchain technology. Energy trading has increased due to access to distributed energy sources and electricity producers who can financially export surplus fuels. The energy trading system successfully combines energy from multiple sources to ensure consistent and optimal use of available resources and better facilities for energy users. Peer-to-peer (P2P) energy trading is a common field of study that presents some administrative and technical difficulties. This article provides a general overview of P2P energy exchange. It discusses how blockchain can improve transparency and overall performance, including the degree of decentralization, scalability, and device reliability. The research is extended to examine unresolved issues and potential directions for P2P blockchain-based energy sharing in the future. In fact, this paper also demonstrates the importance of blockchain in future smart grid activities and its blockchain-based applications. The study also briefly examines the issues associated with blockchain integration, ensuring the decentralized, secure and scalable operation of autonomous electric grids in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2021Embargo end date: 01 Jan 2021 TurkeyPublisher:MDPI AG Authors: Muhammad Shahid Iqbal; Yalcin Sadi; Sinem Coleri;pmid: 34640919
pmc: PMC8512360
Wireless powered communication networks (WPCNs) will be a major enabler of massive machine type communications (MTCs), which is a major service domain for 5G and beyond systems. These MTC networks will be deployed by using low-power transceivers and a very limited set of transmission configurations. We investigate a novel minimum length scheduling problem for multi-cell full-duplex wireless powered communication networks to determine the optimal power control and scheduling for constant rate transmission model. The formulated optimization problem is combinatorial in nature and, thus, difficult to solve for the global optimum. As a solution strategy, first, we decompose the problem into the power control problem (PCP) and scheduling problem. For the PCP, we propose the optimal polynomial time algorithm based on the evaluation of Perron–Frobenius conditions. For the scheduling problem, we propose a heuristic algorithm that aims to maximize the number of concurrently transmitting users by maximizing the allowable interference on each user without violating the signal-to-noise-ratio (SNR) requirements. Through extensive simulations, we demonstrate a 50% reduction in the schedule length by using the proposed algorithm in comparison to unscheduled concurrent transmissions.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/19/6599/pdfData sources: Multidisciplinary Digital Publishing InstituteKadir Has University Academic RepositoryArticle . 2021Data sources: Kadir Has University Academic RepositoryAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık Arşivihttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteKoç University Suna Kıraç Library’ Digital CollectionsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21196599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/19/6599/pdfData sources: Multidisciplinary Digital Publishing InstituteKadir Has University Academic RepositoryArticle . 2021Data sources: Kadir Has University Academic RepositoryAperta - TÜBİTAK Açık ArşiviOther literature type . 2021License: CC BYData sources: Aperta - TÜBİTAK Açık Arşivihttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: DataciteKoç University Suna Kıraç Library’ Digital CollectionsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21196599&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Sami Saeed Binyamin; Sami Ben Slama;Multi-Agent Systems (MAS) have been seen as an attractive area of research for civil engineering professionals to subdivide complex issues. Based on the assignment’s history, nearby agents, and objective, the agent intended to take the appropriate action to complete the task. MAS models complex systems, smart grids, and computer networks. MAS has problems with agent coordination, security, and work distribution despite its use. This paper reviews MAS definitions, attributes, applications, issues, and communications. For this reason, MASs have drawn interest from computer science and civil engineering experts to solve complex difficulties by subdividing them into smaller assignments. Agents have individual responsibilities. Each agent selects the best action based on its activity history, interactions with neighbors, and purpose. MAS uses the modeling of complex systems, smart grids, and computer networks. Despite their extensive use, MAS still confronts agent coordination, security, and work distribution challenges. This study examines MAS’s definitions, characteristics, applications, issues, communications, and evaluation, as well as the classification of MAS applications and difficulties, plus research references. This paper should be a helpful resource for MAS researchers and practitioners. MAS in controlling smart grids, including energy management, energy marketing, pricing, energy scheduling, reliability, network security, fault handling capability, agent-to-agent communication, SG-electrical cars, SG-building energy systems, and soft grids, have been examined. More than 100 MAS-based smart grid control publications have been reviewed, categorized, and compiled.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Vinay Chamola; Tejasvi Alladi; Sergei A. Kozlov; Joel J. P. C. Rodrigues; Joel J. P. C. Rodrigues;With the integration of Wireless Sensor Networks and the Internet of Things, the smart grid is being projected as a solution for the challenges regarding electricity supply in the future. However, security and privacy issues in the consumption and trading of electricity data pose serious challenges in the adoption of the smart grid. To address these challenges, blockchain technology is being researched for applicability in the smart grid. In this paper, important application areas of blockchain in the smart grid are discussed. One use case of each area is discussed in detail, suggesting a suitable blockchain architecture, a sample block structure and the potential blockchain technicalities employed in it. The blockchain can be used for peer-to-peer energy trading, where a credit-based payment scheme can enhance the energy trading process. Efficient data aggregation schemes based on the blockchain technology can be used to overcome the challenges related to privacy and security in the grid. Energy distribution systems can also use blockchain to remotely control energy flow to a particular area by monitoring the usage statistics of that area. Further, blockchain-based frameworks can also help in the diagnosis and maintenance of smart grid equipment. We also discuss several commercial implementations of blockchain in the smart grid. Finally, various challenges to be addressed for integrating these two technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19224862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 212 citations 212 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19224862&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Spain, United StatesPublisher:MDPI AG Authors: Hernández Callejo, Luis; Baladrón García, Carlos; Aguiar Pérez, Javier Manuel; Calavia, Lorena; +5 AuthorsHernández Callejo, Luis; Baladrón García, Carlos; Aguiar Pérez, Javier Manuel; Calavia, Lorena; Carro Martínez, Belén; Sánchez Esguevillas, Antonio Javier; Cook, Diane J.; Chinarro, David; Gómez Sanz, Jorge;doi: 10.3390/s120911571
handle: 20.500.14352/43287
One of the main challenges of today’s society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.
Sensors arrow_drop_down SensorsOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1424-8220/12/9/11571/pdfData sources: Multidisciplinary Digital Publishing InstituteWashington State University: Research ExchangeArticle . 2012License: CC BYFull-Text: https://doi.org/10.3390/s120911571Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s120911571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1424-8220/12/9/11571/pdfData sources: Multidisciplinary Digital Publishing InstituteWashington State University: Research ExchangeArticle . 2012License: CC BYFull-Text: https://doi.org/10.3390/s120911571Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s120911571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu