- home
- Advanced Search
- Energy Research
- engineering and technology
- 6. Clean water
- Energy Procedia
- Energy Research
- engineering and technology
- 6. Clean water
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Bruce T. Kelley; Paul S. Northrop; Jaime A. Valencia; Charles J. Mart;AbstractThe Controlled Freeze Zone™ technology removes CO2 and H2S from natural gas in a single step cryogenic distillation process. Removal and management of acid gas impurities from natural gas pose significant challenges in developing sour gas fields. In many cases CFZ™ is capable of processing sour gases with a wide range of CO2 and H2S compositions at a lower cost than conventional technologies. The acidic components are removed as a high pressure liquid that can be injected into reservoirs for geosequestration or, when of suitable composition, to improve oil recovery. In either case, sulfur production from H2S and release of CO2 to the atmosphere can be eliminated.CFZ™ technology was successfully demonstrated through earlier pilot plant operations. Currently, ExxonMobil Upstream Research Company is advancing CFZ™ to large scale commercial readiness through a commercial demonstration plant in Wyoming, USA. By building the commercial demonstration plant at ExxonMobil’s world-class Shute Creek gas treating and acid gas injection facility, integration of CFZ™ with acid gas injection, will also be demonstrated when the unit is operated in 2010–2011.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Marco Agnelli; David Brusi; David Soler; Manel Zamorano; Anna Menció; Alvaro Sáinz-García; Fidel Grandia;Abstract The impact of CO 2 leakage from underground storage formations on shallow water resources is a concerning aspect in CO 2 capture and storage (CCS) risk assessment. In Campo de Calatrava region (Spain), natural CO 2 fluxes from the Earth’s mantle interact with shallow aquifers, resulting in significant changes in their physical and chemical properties. The resultant water is slightly acidic (pH 5.9-6.4), oxidizing, and enriched in iron (up to 6.1×10 -4 mol·L -1 ) and other metals usually found at trace concentrations. Thermodynamic calculations reveal that aqueous Fe(III) carbonate complexes play an important role in the persistence of this high concentration of iron and trace metals in solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: CASASSO, ALESSANDRO; SETHI, RAJANDREA;handle: 11583/2627157
AbstractThe efficiency of Geothermal Heat Pumps (GHPs) strongly depends on the site-specific parameters of the ground, which should therefore be mapped for the rational planning of shallow geothermal installations. In this paper, a case study is presented for the potentiality assessment of low enthalpy geothermal energy in the Province of Cuneo, a district of 6900 km2 in Piedmont, NW Italy. The available information on the geology, stratigraphy, hydrogeology, climate etc. were processed and mapped, and conclusions were drawn on the geothermal suitability and productivity of different areas of the territory surveyed.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Hiro Ikemi; Hiroyuki Honda; Yasuhiro Mitani; Keigo Kitamura; Shinnosuke Takaki;Abstract Evaluating and monitoring the CO 2 behavior in the reservoir, understanding the mechanism of CO 2 flow and distribution in the water-CO 2 mixture state is essential. In this study, measurement of the complex electrical impedance ( Z ) and P-wave velocity ( V p ) is conducted during the CO 2 injection into the rock core under the reservoir condition. Specimen is low permeable sandstone and injection rate is ultra-low (in the low capillarity number (C n ) area) to high. In addition to measuring Z and V p , differential pressure on the both sides of the specimen and CO 2 saturation (S CO2 ) of the entire specimen are measured. The change of Z and V p are observed according to the change of differential pressure and S CO2 . After the injection test, S CO2 in cross-section of the specimen is estimated using Archie's law and Gassmann's equation (Patchy saturation model) to the experimental results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Funded by:EC | BEIPDEC| BEIPDPujades, Estanislao; Orban, Philippe; Jurado, Anna; Ayora, Carlos; Brouyère, Serge; Dassargues, Alain;handle: 10261/174782
Underground Pumped Storage Hydropower (UPSH) is an alternative to manage the electricity production in flat regions. UPSH plants consist of two reservoirs of which at least one is underground. For this last reservoir, abandoned mines could be considered. UPSH related activities may induce hydrochemical variations, such as the increase of the oxygen (O2) partial pressure (pO2), which may entail negative consequences in terms of environment and efficiency, especially in coal mined areas where the presence of sulfide minerals is common. This work assesses the main expected environmental impacts that UPSH using abandoned coal mines may induce. © 2017 The Authors. Published by Elsevier Ltd. E. Pujades and A. Jurado gratefully acknowledge the financial support from the University of Liège and the EU through the Marie Curie BeIPD-COFUND postdoctoral fellowship programme (2014/16 and 2015/17 fellows from “FP7-MSCA-COFUND, 600405”). This research has been supported by the Public Service of Wallonia – Department of Energy and Sustainable Building. Peer reviewed
Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 95visibility views 95 download downloads 46 Powered bymore_vert Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Hoon Che Park; Cheol Huh; Seong-Gil Kang; Hangseok Choi;AbstractInternational attention has been considerably paid for the technology of CO2 capture and storage (CCS) these days because of global warming. In line with the fact that carbon dioxide capture and storage (CCS) technology has been regarded as one of the most promising option to mitigate the climate change and global warming, we have started a 10-year R&D project on CO2 storage in marine geological structure. We carried out relevant studies, which cover the initial survey of potentially suitable marine geological structure for CO2 storage site, monitoring of the stored CO2 behavior, basic design for CO2 transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to CO2 leakage in storage site. The purpose of this paper is to model and simulate a CO2 flow and its heat transfer characteristics in a storage site for more accurate evaluation of the safety of CO2 storage process.Among CCS technologies, the prediction of CO2 behavior in underground is very critical for CO2 storage design with safety. As a part of the storage design, a micro pore-scale model was developed to mimic real porous structure and CFD (computational fluid dynamics) was applied to calculate the CO2 flow and thermal fields in the micro pore-scale porous structure. Varying CO2 injection conditions, the behavior of the CO2 flow was calculated. Especially, physical conditions such as temperature and pressure were set up equivalent to the underground condition at which the CO2 fluid was injected. From the results, the characteristics of the flow and thermal fields of CO2 were scrutinized and the influence of CO2 injection condition on the flow was investigated in the micro pore-scale porous structure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Guangyi Zhang; Gan Lina; Dachao Ma; Dachao Ma; Kunio Yoshikawa; Chinnathan Areeprasert;AbstractAntibiotic mycelial dreg (AMD) is one of typical industrial wastes with high moisture and nitrogen contents which are difficult to be dealt with. The previous works demonstrated that the hydrothermal pretreatment is feasible for removing moisture and nitrogen contents from AMD so as to upgrade this waste into solid biofuel. Nevertheless, the NO emission characteristics of its combustion are still unknown and needed to be tested. The present work was aimed to clarify this understanding in a laboratory drop tube reactor under the temperature of 1273K. The raw AMD, the hydrothermally pretreated AMD and coal were respectively supplied into the reactor for combustion. The concentration of NO in the flue gas for different samples were measured and compared to evaluate the emission performance of the fuels. Compared to raw AMD, the NO emission of mono-combustion of hydrothermally pretreated AMD was dramatically reduced, whose reduction rate was above 30%. In order to investigate the mechanism of NO reduction, some analyses using Thermo Gravimetric Analyzer (TGA), X-ray Photoelectron Spectroscopy (XPS) and others were performed to reveal the properties of the raw AMD, hydrothermally pretreated AMD and coal. It was shown that the intermediates produced from releasing volatile maters act as reductants for the reduction of NO. The hydrothermal pretreatment can control the NO emission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.956&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.956&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type , Conference object , Other literature type 2013 Norway, GermanyPublisher:Elsevier BV Funded by:EC | ECO2EC| ECO2Trond Mannseth; Trond Mannseth; Hilde Kristine Hvidevold; Truls Johannessen; Guttorm Alendal;handle: 1956/9745
AbstractThis paper assesses how parameter uncertainties in the model for rise velocity of CO2 droplets in the ocean cause uncertainties in their rise and dissolution in marine waters. The parameter uncertainties in the rise velocity for both hydrate coated and hydrate free droplets are estimated from experiment data. Thereafter the rise velocity is coupled with a mass transfer model to simulate the fate of dissolution of a single droplet.The assessment shows that parameter uncertainties are highest for large droplets. However, it is also shown that in some circumstances varying the temperature gives significant change in rise distance of droplets.
OceanRep arrow_drop_down OceanRepArticle . 2013 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/22357/1/Hvidevold_etal_2013_EnergyProcedia_model_uncertainties.pdfData sources: OceanRepUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BY NC NDFull-Text: https://hdl.handle.net/1956/9745Data sources: Bielefeld Academic Search Engine (BASE)Norwegian Open Research ArchivesOther ORP type . 2013Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Bergen Open Research Archive - UiBhttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2013 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/22357/1/Hvidevold_etal_2013_EnergyProcedia_model_uncertainties.pdfData sources: OceanRepUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BY NC NDFull-Text: https://hdl.handle.net/1956/9745Data sources: Bielefeld Academic Search Engine (BASE)Norwegian Open Research ArchivesOther ORP type . 2013Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Bergen Open Research Archive - UiBhttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Noor Asma Fazli Abdul Samad; Nur Ashikin Jamin; Suriyati Saleh;Abstract Municipal solid waste (MSW) disposal is one of the main issues towards sustainable development in Malaysia. Current practices for MSW disposal such as landfilling and incineration poses a serious problems on the environment and health. Therefore a significant efforts have been made to utilize MSW for energy source by employing gasification process. However, the MSW is characterized by its high moisture content and low high heating value (HHV) which lowering the energy efficiency. In order to overcome this problems, torrefaction can be used as pretreatment method to remove the moisture content and upgrading MSW properties. The objective of this work is to study the effects of torrefaction temperatures ranging from 240 to 330°C for residence time of 30 minutes on two types of MSW namely food waste and wood waste. The torrefied MSWs are characterized in terms of ultimate analysis, proximate analysis and HHV. The mass and energy yields are also performed for both MSW. Based on the torrefaction, it was found that both food waste and wood waste show an increment on the weight percentage of C contents and decrement on the weight percentage of H and O content which resulting into reduce O/C ratio as the temperature is increased. The HHV for both food waste and wood waste are also increased after torrefaction between 240 and 330°C. The mass yield and energy yield were found to decrease with an increase in the torrefaction temperature. This suggests that torrefaction can be used as an effective MSW pretreatment and the torrefied MSW is more suitable to be used as fuel in gasification process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.10.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.10.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Joel Sminchak; Andrew Theodos; Glenn Larsen; Neeraj Gupta; Mark Moody;AbstractA systematic investigation was completed to evaluate wellbore integrity factors for oil and gas wells in the Midwestern U.S. in relation to CO2 geosequestration. In this region, over one million oil and gas wells have been drilled, and there is a perception that many areas are not suitable for geosequestration. The project focused on Michigan and Ohio as study areas. Records were obtained for over 280,000 wells. Plugging and abandonment reports were tabulated for 1,730 wells, and 278 cement bond logs were analyzed with a systematic method to grade the cement present in the well. Sustained casing pressure was monitored and analyzed for cement defect factor on thirteen wells in various configurations. The data was summarized with maps and graphs. The test site assessments provide examples of the steps and costs necessary to address wells in the region. Results indicate that a variety of well construction and plugging approaches were used over time, but many of the geologic formations being considered for CO2 storage are not penetrated by many wells. The project provided practical tools for CO2 storage applications including: database of well parameters, systematic cement bond log evaluation tool, and sustained casing pressure analysis method for cement defect factor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Bruce T. Kelley; Paul S. Northrop; Jaime A. Valencia; Charles J. Mart;AbstractThe Controlled Freeze Zone™ technology removes CO2 and H2S from natural gas in a single step cryogenic distillation process. Removal and management of acid gas impurities from natural gas pose significant challenges in developing sour gas fields. In many cases CFZ™ is capable of processing sour gases with a wide range of CO2 and H2S compositions at a lower cost than conventional technologies. The acidic components are removed as a high pressure liquid that can be injected into reservoirs for geosequestration or, when of suitable composition, to improve oil recovery. In either case, sulfur production from H2S and release of CO2 to the atmosphere can be eliminated.CFZ™ technology was successfully demonstrated through earlier pilot plant operations. Currently, ExxonMobil Upstream Research Company is advancing CFZ™ to large scale commercial readiness through a commercial demonstration plant in Wyoming, USA. By building the commercial demonstration plant at ExxonMobil’s world-class Shute Creek gas treating and acid gas injection facility, integration of CFZ™ with acid gas injection, will also be demonstrated when the unit is operated in 2010–2011.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Marco Agnelli; David Brusi; David Soler; Manel Zamorano; Anna Menció; Alvaro Sáinz-García; Fidel Grandia;Abstract The impact of CO 2 leakage from underground storage formations on shallow water resources is a concerning aspect in CO 2 capture and storage (CCS) risk assessment. In Campo de Calatrava region (Spain), natural CO 2 fluxes from the Earth’s mantle interact with shallow aquifers, resulting in significant changes in their physical and chemical properties. The resultant water is slightly acidic (pH 5.9-6.4), oxidizing, and enriched in iron (up to 6.1×10 -4 mol·L -1 ) and other metals usually found at trace concentrations. Thermodynamic calculations reveal that aqueous Fe(III) carbonate complexes play an important role in the persistence of this high concentration of iron and trace metals in solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: CASASSO, ALESSANDRO; SETHI, RAJANDREA;handle: 11583/2627157
AbstractThe efficiency of Geothermal Heat Pumps (GHPs) strongly depends on the site-specific parameters of the ground, which should therefore be mapped for the rational planning of shallow geothermal installations. In this paper, a case study is presented for the potentiality assessment of low enthalpy geothermal energy in the Province of Cuneo, a district of 6900 km2 in Piedmont, NW Italy. The available information on the geology, stratigraphy, hydrogeology, climate etc. were processed and mapped, and conclusions were drawn on the geothermal suitability and productivity of different areas of the territory surveyed.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Hiro Ikemi; Hiroyuki Honda; Yasuhiro Mitani; Keigo Kitamura; Shinnosuke Takaki;Abstract Evaluating and monitoring the CO 2 behavior in the reservoir, understanding the mechanism of CO 2 flow and distribution in the water-CO 2 mixture state is essential. In this study, measurement of the complex electrical impedance ( Z ) and P-wave velocity ( V p ) is conducted during the CO 2 injection into the rock core under the reservoir condition. Specimen is low permeable sandstone and injection rate is ultra-low (in the low capillarity number (C n ) area) to high. In addition to measuring Z and V p , differential pressure on the both sides of the specimen and CO 2 saturation (S CO2 ) of the entire specimen are measured. The change of Z and V p are observed according to the change of differential pressure and S CO2 . After the injection test, S CO2 in cross-section of the specimen is estimated using Archie's law and Gassmann's equation (Patchy saturation model) to the experimental results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Funded by:EC | BEIPDEC| BEIPDPujades, Estanislao; Orban, Philippe; Jurado, Anna; Ayora, Carlos; Brouyère, Serge; Dassargues, Alain;handle: 10261/174782
Underground Pumped Storage Hydropower (UPSH) is an alternative to manage the electricity production in flat regions. UPSH plants consist of two reservoirs of which at least one is underground. For this last reservoir, abandoned mines could be considered. UPSH related activities may induce hydrochemical variations, such as the increase of the oxygen (O2) partial pressure (pO2), which may entail negative consequences in terms of environment and efficiency, especially in coal mined areas where the presence of sulfide minerals is common. This work assesses the main expected environmental impacts that UPSH using abandoned coal mines may induce. © 2017 The Authors. Published by Elsevier Ltd. E. Pujades and A. Jurado gratefully acknowledge the financial support from the University of Liège and the EU through the Marie Curie BeIPD-COFUND postdoctoral fellowship programme (2014/16 and 2015/17 fellows from “FP7-MSCA-COFUND, 600405”). This research has been supported by the Public Service of Wallonia – Department of Energy and Sustainable Building. Peer reviewed
Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 95visibility views 95 download downloads 46 Powered bymore_vert Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Hoon Che Park; Cheol Huh; Seong-Gil Kang; Hangseok Choi;AbstractInternational attention has been considerably paid for the technology of CO2 capture and storage (CCS) these days because of global warming. In line with the fact that carbon dioxide capture and storage (CCS) technology has been regarded as one of the most promising option to mitigate the climate change and global warming, we have started a 10-year R&D project on CO2 storage in marine geological structure. We carried out relevant studies, which cover the initial survey of potentially suitable marine geological structure for CO2 storage site, monitoring of the stored CO2 behavior, basic design for CO2 transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to CO2 leakage in storage site. The purpose of this paper is to model and simulate a CO2 flow and its heat transfer characteristics in a storage site for more accurate evaluation of the safety of CO2 storage process.Among CCS technologies, the prediction of CO2 behavior in underground is very critical for CO2 storage design with safety. As a part of the storage design, a micro pore-scale model was developed to mimic real porous structure and CFD (computational fluid dynamics) was applied to calculate the CO2 flow and thermal fields in the micro pore-scale porous structure. Varying CO2 injection conditions, the behavior of the CO2 flow was calculated. Especially, physical conditions such as temperature and pressure were set up equivalent to the underground condition at which the CO2 fluid was injected. From the results, the characteristics of the flow and thermal fields of CO2 were scrutinized and the influence of CO2 injection condition on the flow was investigated in the micro pore-scale porous structure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Guangyi Zhang; Gan Lina; Dachao Ma; Dachao Ma; Kunio Yoshikawa; Chinnathan Areeprasert;AbstractAntibiotic mycelial dreg (AMD) is one of typical industrial wastes with high moisture and nitrogen contents which are difficult to be dealt with. The previous works demonstrated that the hydrothermal pretreatment is feasible for removing moisture and nitrogen contents from AMD so as to upgrade this waste into solid biofuel. Nevertheless, the NO emission characteristics of its combustion are still unknown and needed to be tested. The present work was aimed to clarify this understanding in a laboratory drop tube reactor under the temperature of 1273K. The raw AMD, the hydrothermally pretreated AMD and coal were respectively supplied into the reactor for combustion. The concentration of NO in the flue gas for different samples were measured and compared to evaluate the emission performance of the fuels. Compared to raw AMD, the NO emission of mono-combustion of hydrothermally pretreated AMD was dramatically reduced, whose reduction rate was above 30%. In order to investigate the mechanism of NO reduction, some analyses using Thermo Gravimetric Analyzer (TGA), X-ray Photoelectron Spectroscopy (XPS) and others were performed to reveal the properties of the raw AMD, hydrothermally pretreated AMD and coal. It was shown that the intermediates produced from releasing volatile maters act as reductants for the reduction of NO. The hydrothermal pretreatment can control the NO emission.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.956&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.956&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type , Conference object , Other literature type 2013 Norway, GermanyPublisher:Elsevier BV Funded by:EC | ECO2EC| ECO2Trond Mannseth; Trond Mannseth; Hilde Kristine Hvidevold; Truls Johannessen; Guttorm Alendal;handle: 1956/9745
AbstractThis paper assesses how parameter uncertainties in the model for rise velocity of CO2 droplets in the ocean cause uncertainties in their rise and dissolution in marine waters. The parameter uncertainties in the rise velocity for both hydrate coated and hydrate free droplets are estimated from experiment data. Thereafter the rise velocity is coupled with a mass transfer model to simulate the fate of dissolution of a single droplet.The assessment shows that parameter uncertainties are highest for large droplets. However, it is also shown that in some circumstances varying the temperature gives significant change in rise distance of droplets.
OceanRep arrow_drop_down OceanRepArticle . 2013 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/22357/1/Hvidevold_etal_2013_EnergyProcedia_model_uncertainties.pdfData sources: OceanRepUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BY NC NDFull-Text: https://hdl.handle.net/1956/9745Data sources: Bielefeld Academic Search Engine (BASE)Norwegian Open Research ArchivesOther ORP type . 2013Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Bergen Open Research Archive - UiBhttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2013 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/22357/1/Hvidevold_etal_2013_EnergyProcedia_model_uncertainties.pdfData sources: OceanRepUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BY NC NDFull-Text: https://hdl.handle.net/1956/9745Data sources: Bielefeld Academic Search Engine (BASE)Norwegian Open Research ArchivesOther ORP type . 2013Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Bergen Open Research Archive - UiBhttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Noor Asma Fazli Abdul Samad; Nur Ashikin Jamin; Suriyati Saleh;Abstract Municipal solid waste (MSW) disposal is one of the main issues towards sustainable development in Malaysia. Current practices for MSW disposal such as landfilling and incineration poses a serious problems on the environment and health. Therefore a significant efforts have been made to utilize MSW for energy source by employing gasification process. However, the MSW is characterized by its high moisture content and low high heating value (HHV) which lowering the energy efficiency. In order to overcome this problems, torrefaction can be used as pretreatment method to remove the moisture content and upgrading MSW properties. The objective of this work is to study the effects of torrefaction temperatures ranging from 240 to 330°C for residence time of 30 minutes on two types of MSW namely food waste and wood waste. The torrefied MSWs are characterized in terms of ultimate analysis, proximate analysis and HHV. The mass and energy yields are also performed for both MSW. Based on the torrefaction, it was found that both food waste and wood waste show an increment on the weight percentage of C contents and decrement on the weight percentage of H and O content which resulting into reduce O/C ratio as the temperature is increased. The HHV for both food waste and wood waste are also increased after torrefaction between 240 and 330°C. The mass yield and energy yield were found to decrease with an increase in the torrefaction temperature. This suggests that torrefaction can be used as an effective MSW pretreatment and the torrefied MSW is more suitable to be used as fuel in gasification process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.10.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.10.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Joel Sminchak; Andrew Theodos; Glenn Larsen; Neeraj Gupta; Mark Moody;AbstractA systematic investigation was completed to evaluate wellbore integrity factors for oil and gas wells in the Midwestern U.S. in relation to CO2 geosequestration. In this region, over one million oil and gas wells have been drilled, and there is a perception that many areas are not suitable for geosequestration. The project focused on Michigan and Ohio as study areas. Records were obtained for over 280,000 wells. Plugging and abandonment reports were tabulated for 1,730 wells, and 278 cement bond logs were analyzed with a systematic method to grade the cement present in the well. Sustained casing pressure was monitored and analyzed for cement defect factor on thirteen wells in various configurations. The data was summarized with maps and graphs. The test site assessments provide examples of the steps and costs necessary to address wells in the region. Results indicate that a variety of well construction and plugging approaches were used over time, but many of the geologic formations being considered for CO2 storage are not penetrated by many wells. The project provided practical tools for CO2 storage applications including: database of well parameters, systematic cement bond log evaluation tool, and sustained casing pressure analysis method for cement defect factor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu