- home
- Advanced Search
- Energy Research
- civil engineering
- UK Research and Innovation
- Energy Research
- civil engineering
- UK Research and Innovation
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2018Embargo end date: 01 Jan 2018 United KingdomPublisher:The Royal Society Funded by:UKRI | Dynamic Design Tools For ..., UKRI | Engineering NonlinearityUKRI| Dynamic Design Tools For Understanding and Exploiting Nonlinearity in Structures ,UKRI| Engineering NonlinearityL. Renson; T. L. Hill; D. A. Ehrhardt; D. A. W. Barton; S. A. Neild;Nonlinear normal modes (NNMs) are widely used as a tool for developing mathematical models of nonlinear structures and understanding their dynamics. NNMs can be identified experimentally through a phase quadrature condition between the system response and the applied excitation. This paper demonstrates that this commonly used quadrature condition can give results that are significantly different from the true NNM, in particular, when the excitation applied to the system is limited to one input force, as is frequently used in practice. The system studied is a clamped–clamped cross-beam with two closely spaced modes. This paper shows that the regions where the quadrature condition is (in)accurate can be qualitatively captured by analysing transfer of energy between the modes of the system, leading to a discussion of the appropriate number of input forces and their locations across the structure.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspa.2017.0880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspa.2017.0880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Copernicus GmbH Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Peyman Amirafshari; Feargal Brenan; Athanasios Kolios;Abstract. Offshore wind turbine (OWT) support structures need to be designed against fatigue failure under cyclic aerodynamic and wave loading. The fatigue failure can be accelerated in a corrosive sea environment. Traditionally, a stress–life approach called the S–N (stress–number of cycles) curve method has been used for the design of structures against fatigue failure. There are a number of limitations in the S–N approach related to welded structures which can be addressed by the fracture mechanics approach. In this paper the limitations of the S–N approach related to OWT support structure are addressed and a fatigue design framework based on fracture mechanics is developed. The application of the framework to a monopile OWT support structure is demonstrated and optimisation of in-service inspection of the structure is studied. It was found that both the design of the weld joint and non-destructive testing (NDT) techniques can be optimised to reduce in-service inspection frequency. Furthermore, probabilistic fracture mechanics as a form of risk-based design is outlined and its application to the monopile support structure is studied. The probabilistic model showed a better capability to account for NDT reliability over a range of possible crack sizes as well as to provide a risk associated with the chosen inspection time which can be used in inspection cost–benefit analysis. There are a number of areas for future research, including a better estimate of fatigue stress with a time-history analysis, the application of the framework to other types of support structures such as jackets and tripods, and integration of risk-based optimisation with a cost–benefit analysis.
Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-677-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 44 Powered bymore_vert Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-677-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:UKRI | Structural Health Monitor..., EC | WINDMIL, EC | DyVirtUKRI| Structural Health Monitoring of Systems of Systems: Populations, Networks and Communities ,EC| WINDMIL ,EC| DyVirtTsialiamanis, G.; Mylonas, C.; Chatzi, E.; Dervilis, N.; Wagg, D.J.; Worden, K.;arXiv: 2103.03655
One of the requirements of the population-based approach to Structural Health Monitoring (SHM) proposed in the earlier papers in this sequence, is that structures be represented by points in an abstract space. Furthermore, these spaces should be metric spaces in a loose sense; i.e. there should be some measure of distance applicable to pairs of points; similar structures should then be close in the metric. However, this geometrical construction is not enough for the framing of problems in data-based SHM, as it leaves undefined the notion of feature spaces. Interpreting the feature values on a structure-by-structure basis as a type of field over the space of structures, it seems sensible to borrow an idea from modern theoretical physics, and define feature assignments as sections in a vector bundle over the structure space. With this idea in place, one can interpret the effect of environmental and operational variations as gauge degrees of freedom, as in modern gauge field theories. This paper will discuss the various geometrical structures required for an abstract theory of feature spaces in SHM, and will draw analogies with how these structures have shown their power in modern physics. In the second part of the paper, the problem of determining the normal condition cross section of a feature bundle is addressed. The solution is provided by the application of Graph Neural Networks (GNN), a versatile non-Euclidean machine learning algorithm which is not restricted to inputs and outputs from vector spaces. In particular, the algorithm is well suited to operating directly on the sort of graph structures which are an important part of the proposed framework for PBSHM. The solution of the normal section problem is demonstrated for a heterogeneous population of truss structures for which the feature of interest is the first natural frequency.
CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development of a Novel Se...UKRI| Development of a Novel Self-Healing Composite for Sustainable and Resilient Concrete InfrastructureChen, M; Zhong, H; Chen, L; Zhang, Y; Zhang, M;Abstract To provide an eco-friendly disposal way of increasingly accumulated waste tyres and reduce the environmental impact caused by the production of industrial fibres, this study explores the feasibility of using recycled tyre materials as substitutes for natural fine aggregates and manufactured fibres in cementitious mortar. The effects of crumb rubber (CR) replacement ratio (5%–15% by volume of fine aggregates), recycled tyre steel (RTS) fibre content (0.5–1.5 vol%) and recycled tyre polymer (RTP) fibre content (0.5–1.0 vol%) on the engineering properties of fibre reinforced cementitious composite (FRRC) were experimentally investigated. Results indicate that the pre-treated CR using NaOH solution is feasible to combine with a high dosage of recycled fibres without considerably weakening the workability, bulk density, ultrasonic pulse velocity and compressive strength of FRRC. The incorporation of CR, RTS fibre and RTP fibre together can reduce the drying shrinkage by up to 41.6% and enhance the flexural strength by at most 174% as compared to the plain mortar. The production cost, embodied carbon and embodied energy of FRRC are decreased by 13.3%–68.2% when replacing the manufactured fibres with recycled tyre fibres. The optimal content of CR and RTS fibre and RTP fibre is 5%–10%, 1.0 vol% and 0.5 vol%, respectively, considering the engineering properties, cost and environmental impact.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:MDPI AG Funded by:UKRI | Doctoral Training Centre ...UKRI| Doctoral Training Centre in Wind Energy SystemsMarcus Perry; Grzegorz Fusiek; Pawel Niewczas; Tim Rubert; Jack McAlorum;Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete’s initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17122928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17122928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 15 Apr 2019 United Kingdom, SpainPublisher:Elsevier BV Funded by:UKRI | Embedding measured data w...UKRI| Embedding measured data within a computational framework for vibro-acoustic designClot, A; Meggitt, JWR; Langley, RS; Elliott, AS; Moorhouse, AT;handle: 2117/177691
The vibro-acoustic response of complex structures with uncertain properties is a problem of great concern for modern industries. In recent years, much research has been devoted to the prediction of this response in the mid-frequency range where, because neither Finite element analysis nor statistical energy analysis are appropriate, a hybrid deterministic-statistical approach becomes a suitable solution. Despite its potential, the existence of systems with active components that are too complex to be modelled numerically can limit the application of the method. However, it may still be possible to measure the dynamical response of these structures experimentally. This paper is hence concerned with the possibility of integrating experimental data into a hybrid deterministic-statistical method. To explain the new methodology, two similar case studies, consisting of a deterministic source structure that is coupled to a statistical plate receiver using passive isolators, are used. For each case, the vibratory excitation, characterised using in-situ blocked force measurements, the source structure mobility, and the isolators stiffness are experimentally determined and inserted in the proposed hybrid model of the system. The paper explains the techniques used for obtaining the considered experimental data and the theoretical model proposed for describing the systems. To validate the proposed approach, the predicted vibration response of the receiver plate is compared to the one obtained by experimentally randomising the plate in both case studies. The results show that a good agreement is obtained, both for the ensemble average response of the receiver structure and for the ensemble variance of this response. Moreover, the upper con dence bounds predicted by the hybrid method enclose well the ensemble of experimental results. The cause of some narrow-band differences observed between the predicted response and the experimental measurements is finally discussed. It is therefore concluded that the capabilities of the hybrid deterministic-statistical method can be clearly enhanced through the incorporation of experimental data prescribing active sub-systems.
CORE arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Sound and VibrationArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsv.2019.03.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 119visibility views 119 download downloads 209 Powered bymore_vert CORE arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Sound and VibrationArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsv.2019.03.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development of a Novel Se...UKRI| Development of a Novel Self-Healing Composite for Sustainable and Resilient Concrete InfrastructureAuthors: Hui Zhong; Meng Chen; Mingzhong Zhang;To lower the material cost and environmental impact of polyvinyl alcohol (PVA) fibre reinforced engineered cementitious composite (ECC), recycled tyre polymer (RTP) fibres were adopted to partially replace PVA fibres in ECC in this study, with an overall aim to develop sustainable ECC with RTP fibres without significantly affecting the engineering properties. A series of tests were conducted to investigate the effect of RTP fibre content on the engineering properties of ECC, with special focus on tensile strain-hardening behaviour and dynamic compressive behaviour. Results indicate that the incorporation of RTP fibres can improve the drying shrinkage resistance of PVA fibre reinforced ECC by 5–13% at 28 d while no positive influences are found on the workability and quasi-static compressive properties. There exists clear strain-hardening behaviour for all studied ECC mixes even when 50% of PVA fibre is substituted with RTP fibre. Based on the results of the micromechanical investigation, all mixtures satisfy the criteria for achieving a robust strain-hardening behaviour. All ECC specimens are characterised by a pronounced strain rate effect under dynamic compression and ECC incorporating RTP fibres shows a stronger sensitivity as opposed to ECC with 2.0% PVA fibre. The material cost and energy consumption of ECC are reduced by about 11–45% and 5–18%, respectively, when RTP fibres are present. This study proves the feasibility of utilising RTP fibres in ECC to improve its sustainability and maintain acceptable static and dynamic mechanical properties while the incorporated fibre volume fraction should be limited to 0.5%.
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2023.130672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2023.130672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 03 Dec 2020 United KingdomPublisher:Thomas Telford Ltd. Funded by:UKRI | Centre for Smart Infrastr..., UKRI | CSIC Innovation and Knowl...UKRI| Centre for Smart Infrastructure and Construction (CSIC) ,UKRI| CSIC Innovation and Knowledge Centre Phase 2Authors: Mehran Eskandari Torbaghan; Manu Sasidharan; Manu Sasidharan;Railway track infrastructure asset management is a challenging problem with added values on safety, society and environment. With railways serving as a key sustainable mode of transportation for passengers and freight, the industry is facing an increasing demand to expand its capacity, availability and speed, resulting in faster deterioration of the ageing railway track infrastructure. Given the constrained maintenance budgets and the environmental challenges posed by climate change, railway asset managers have to identify economically and environmentally justifiable track maintenance strategies without compromising on safety. To this end, this paper proposes a risk-informed approach to arrive at sustainable railway track maintenance strategies while considering the associated track maintenance costs and impacts on train operation (environmental emissions and risk of derailments). Monte Carlo simulation is employed to address data uncertainties associated with track quality data, the costs and benefits of track maintenance and train operation. The proposed approach is successfully applied to the heavy-haul railway lines in Sweden and Australia to compare some alternative maintenance strategies and identify the sustainable one.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jinam.20.00018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jinam.20.00018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | PREPARE: Enhancing PREPar...UKRI| PREPARE: Enhancing PREParedness for East African Countries through Seismic Resilience EngineeringFelix Okonta; Innocent Kafodya; Innocent Kafodya; Panos Kloukinas; Panos Kloukinas;Adobe masonry construction constitutes a notable portion of the buildings in both urban and rural areas in less developed countries. Seismic performance of adobe buildings is poor, and low-cost retrofitting measures are required to enhance the resilience of such buildings during an earthquake. In this study, mechanical properties of fiber reinforced and unreinforced adobe masonry were investigated. Sisal fibers with length of 25 mm were used as reinforcing elements for mortar and adobe bricks at a fiber content of 0.75%. A series of laboratory tests were performed on masonry triplets, couplets and prisms to determine shear strength, tensile resistance and compressive strength, respectively. Uniaxial compression and diagonal compression shear tests were performed on wallets and wall panels, respectively to determine compressive strength and shear strength of the adobe masonry. Finite element linear elastic analysis was conducted using ANSYS Finite-Element code to evaluate the stress state of loaded wall panels. The structural design of adobe masonry walls was carried out according to BS5628 and Eurocode 6 standards, by utilising material properties acquired from the experiments. The results showed that fiber inclusion in the mortar caused an increase in tensile strength of 31%, friction coefficient of 22%, and prism compressive strength of 25% compared with unreinforced mortar. The reinforced wallets exhibited a twofold increase in compressive strength while reinforced wall panels indicated threefold increase in shear strength. The stress state in the reinforced and unreinforced wall panels was not a pure shear state and was better described by RILEM recommendations. The allowable vertical load resistance was found to be 40 kN/m and 100 kN/m for unreinforced and reinforced walls, respectively. The allowable lateral shear resistance was found to be 25 kN/m and 80 kN/m for unreinforced and reinforced walls, respectively. Reinforced masonry elements exhibited considerable ductility and unreinforced masonry elements showed brittle behaviour.
Journal of Building ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Journal of Building EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 174 Powered bymore_vert Journal of Building ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Journal of Building EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development of a Novel Se...UKRI| Development of a Novel Self-Healing Composite for Sustainable and Resilient Concrete InfrastructureAuthors: Hui Zhong; Alzain AlHuwaidi; Yihan Zhang; Mingzhong Zhang;Utilising crumb rubber from waste tyres to replace silica sand in engineered geopolymer composites (EGC) can reduce the environmental impact caused by landfilling and burning the tyres as well as that induced by exhausting the natural resources. This paper presents a systematic study on the effect of partially replacing silica sand with crumb rubber (10–40 %) on the engineering properties of EGC, with special focus on deflection-hardening behaviour. Results indicate that the workability, density, ultrasonic pulse velocity, drying shrinkage resistance, and compressive and flexural strengths of EGC drop with the increasing crumb rubber content. Regardless of crumb rubber content, all studied EGC mixes exhibit pronounced deflection-hardening and multiple cracking characteristics. Replacing 10 % of silica sand with crumb rubber can lead to acceptable compressive and flexural strengths of EGC. The crack width of EGC containing crumb rubber after flexural loading ranges from around 39 µm to 68 µm, which is lower than that of EGC with silica sand only. The presence of crumb rubber can lead to more PVA fibres pulled out and the rubber at the cracking interface may contribute to restraining the crack growth, which is conducive to improving the flexural toughness of EGC and reducing crack width.
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2023.133878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2023.133878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2018Embargo end date: 01 Jan 2018 United KingdomPublisher:The Royal Society Funded by:UKRI | Dynamic Design Tools For ..., UKRI | Engineering NonlinearityUKRI| Dynamic Design Tools For Understanding and Exploiting Nonlinearity in Structures ,UKRI| Engineering NonlinearityL. Renson; T. L. Hill; D. A. Ehrhardt; D. A. W. Barton; S. A. Neild;Nonlinear normal modes (NNMs) are widely used as a tool for developing mathematical models of nonlinear structures and understanding their dynamics. NNMs can be identified experimentally through a phase quadrature condition between the system response and the applied excitation. This paper demonstrates that this commonly used quadrature condition can give results that are significantly different from the true NNM, in particular, when the excitation applied to the system is limited to one input force, as is frequently used in practice. The system studied is a clamped–clamped cross-beam with two closely spaced modes. This paper shows that the regions where the quadrature condition is (in)accurate can be qualitatively captured by analysing transfer of energy between the modes of the system, leading to a discussion of the appropriate number of input forces and their locations across the structure.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspa.2017.0880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspa.2017.0880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Copernicus GmbH Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Peyman Amirafshari; Feargal Brenan; Athanasios Kolios;Abstract. Offshore wind turbine (OWT) support structures need to be designed against fatigue failure under cyclic aerodynamic and wave loading. The fatigue failure can be accelerated in a corrosive sea environment. Traditionally, a stress–life approach called the S–N (stress–number of cycles) curve method has been used for the design of structures against fatigue failure. There are a number of limitations in the S–N approach related to welded structures which can be addressed by the fracture mechanics approach. In this paper the limitations of the S–N approach related to OWT support structure are addressed and a fatigue design framework based on fracture mechanics is developed. The application of the framework to a monopile OWT support structure is demonstrated and optimisation of in-service inspection of the structure is studied. It was found that both the design of the weld joint and non-destructive testing (NDT) techniques can be optimised to reduce in-service inspection frequency. Furthermore, probabilistic fracture mechanics as a form of risk-based design is outlined and its application to the monopile support structure is studied. The probabilistic model showed a better capability to account for NDT reliability over a range of possible crack sizes as well as to provide a risk associated with the chosen inspection time which can be used in inspection cost–benefit analysis. There are a number of areas for future research, including a better estimate of fatigue stress with a time-history analysis, the application of the framework to other types of support structures such as jackets and tripods, and integration of risk-based optimisation with a cost–benefit analysis.
Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-677-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 44 Powered bymore_vert Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-677-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021Publisher:Elsevier BV Funded by:UKRI | Structural Health Monitor..., EC | WINDMIL, EC | DyVirtUKRI| Structural Health Monitoring of Systems of Systems: Populations, Networks and Communities ,EC| WINDMIL ,EC| DyVirtTsialiamanis, G.; Mylonas, C.; Chatzi, E.; Dervilis, N.; Wagg, D.J.; Worden, K.;arXiv: 2103.03655
One of the requirements of the population-based approach to Structural Health Monitoring (SHM) proposed in the earlier papers in this sequence, is that structures be represented by points in an abstract space. Furthermore, these spaces should be metric spaces in a loose sense; i.e. there should be some measure of distance applicable to pairs of points; similar structures should then be close in the metric. However, this geometrical construction is not enough for the framing of problems in data-based SHM, as it leaves undefined the notion of feature spaces. Interpreting the feature values on a structure-by-structure basis as a type of field over the space of structures, it seems sensible to borrow an idea from modern theoretical physics, and define feature assignments as sections in a vector bundle over the structure space. With this idea in place, one can interpret the effect of environmental and operational variations as gauge degrees of freedom, as in modern gauge field theories. This paper will discuss the various geometrical structures required for an abstract theory of feature spaces in SHM, and will draw analogies with how these structures have shown their power in modern physics. In the second part of the paper, the problem of determining the normal condition cross section of a feature bundle is addressed. The solution is provided by the application of Graph Neural Networks (GNN), a versatile non-Euclidean machine learning algorithm which is not restricted to inputs and outputs from vector spaces. In particular, the algorithm is well suited to operating directly on the sort of graph structures which are an important part of the proposed framework for PBSHM. The solution of the normal section problem is demonstrated for a heterogeneous population of truss structures for which the feature of interest is the first natural frequency.
CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development of a Novel Se...UKRI| Development of a Novel Self-Healing Composite for Sustainable and Resilient Concrete InfrastructureChen, M; Zhong, H; Chen, L; Zhang, Y; Zhang, M;Abstract To provide an eco-friendly disposal way of increasingly accumulated waste tyres and reduce the environmental impact caused by the production of industrial fibres, this study explores the feasibility of using recycled tyre materials as substitutes for natural fine aggregates and manufactured fibres in cementitious mortar. The effects of crumb rubber (CR) replacement ratio (5%–15% by volume of fine aggregates), recycled tyre steel (RTS) fibre content (0.5–1.5 vol%) and recycled tyre polymer (RTP) fibre content (0.5–1.0 vol%) on the engineering properties of fibre reinforced cementitious composite (FRRC) were experimentally investigated. Results indicate that the pre-treated CR using NaOH solution is feasible to combine with a high dosage of recycled fibres without considerably weakening the workability, bulk density, ultrasonic pulse velocity and compressive strength of FRRC. The incorporation of CR, RTS fibre and RTP fibre together can reduce the drying shrinkage by up to 41.6% and enhance the flexural strength by at most 174% as compared to the plain mortar. The production cost, embodied carbon and embodied energy of FRRC are decreased by 13.3%–68.2% when replacing the manufactured fibres with recycled tyre fibres. The optimal content of CR and RTS fibre and RTP fibre is 5%–10%, 1.0 vol% and 0.5 vol%, respectively, considering the engineering properties, cost and environmental impact.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:MDPI AG Funded by:UKRI | Doctoral Training Centre ...UKRI| Doctoral Training Centre in Wind Energy SystemsMarcus Perry; Grzegorz Fusiek; Pawel Niewczas; Tim Rubert; Jack McAlorum;Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete’s initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17122928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s17122928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 15 Apr 2019 United Kingdom, SpainPublisher:Elsevier BV Funded by:UKRI | Embedding measured data w...UKRI| Embedding measured data within a computational framework for vibro-acoustic designClot, A; Meggitt, JWR; Langley, RS; Elliott, AS; Moorhouse, AT;handle: 2117/177691
The vibro-acoustic response of complex structures with uncertain properties is a problem of great concern for modern industries. In recent years, much research has been devoted to the prediction of this response in the mid-frequency range where, because neither Finite element analysis nor statistical energy analysis are appropriate, a hybrid deterministic-statistical approach becomes a suitable solution. Despite its potential, the existence of systems with active components that are too complex to be modelled numerically can limit the application of the method. However, it may still be possible to measure the dynamical response of these structures experimentally. This paper is hence concerned with the possibility of integrating experimental data into a hybrid deterministic-statistical method. To explain the new methodology, two similar case studies, consisting of a deterministic source structure that is coupled to a statistical plate receiver using passive isolators, are used. For each case, the vibratory excitation, characterised using in-situ blocked force measurements, the source structure mobility, and the isolators stiffness are experimentally determined and inserted in the proposed hybrid model of the system. The paper explains the techniques used for obtaining the considered experimental data and the theoretical model proposed for describing the systems. To validate the proposed approach, the predicted vibration response of the receiver plate is compared to the one obtained by experimentally randomising the plate in both case studies. The results show that a good agreement is obtained, both for the ensemble average response of the receiver structure and for the ensemble variance of this response. Moreover, the upper con dence bounds predicted by the hybrid method enclose well the ensemble of experimental results. The cause of some narrow-band differences observed between the predicted response and the experimental measurements is finally discussed. It is therefore concluded that the capabilities of the hybrid deterministic-statistical method can be clearly enhanced through the incorporation of experimental data prescribing active sub-systems.
CORE arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Sound and VibrationArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsv.2019.03.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 119visibility views 119 download downloads 209 Powered bymore_vert CORE arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Sound and VibrationArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsv.2019.03.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development of a Novel Se...UKRI| Development of a Novel Self-Healing Composite for Sustainable and Resilient Concrete InfrastructureAuthors: Hui Zhong; Meng Chen; Mingzhong Zhang;To lower the material cost and environmental impact of polyvinyl alcohol (PVA) fibre reinforced engineered cementitious composite (ECC), recycled tyre polymer (RTP) fibres were adopted to partially replace PVA fibres in ECC in this study, with an overall aim to develop sustainable ECC with RTP fibres without significantly affecting the engineering properties. A series of tests were conducted to investigate the effect of RTP fibre content on the engineering properties of ECC, with special focus on tensile strain-hardening behaviour and dynamic compressive behaviour. Results indicate that the incorporation of RTP fibres can improve the drying shrinkage resistance of PVA fibre reinforced ECC by 5–13% at 28 d while no positive influences are found on the workability and quasi-static compressive properties. There exists clear strain-hardening behaviour for all studied ECC mixes even when 50% of PVA fibre is substituted with RTP fibre. Based on the results of the micromechanical investigation, all mixtures satisfy the criteria for achieving a robust strain-hardening behaviour. All ECC specimens are characterised by a pronounced strain rate effect under dynamic compression and ECC incorporating RTP fibres shows a stronger sensitivity as opposed to ECC with 2.0% PVA fibre. The material cost and energy consumption of ECC are reduced by about 11–45% and 5–18%, respectively, when RTP fibres are present. This study proves the feasibility of utilising RTP fibres in ECC to improve its sustainability and maintain acceptable static and dynamic mechanical properties while the incorporated fibre volume fraction should be limited to 0.5%.
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2023.130672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2023.130672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 03 Dec 2020 United KingdomPublisher:Thomas Telford Ltd. Funded by:UKRI | Centre for Smart Infrastr..., UKRI | CSIC Innovation and Knowl...UKRI| Centre for Smart Infrastructure and Construction (CSIC) ,UKRI| CSIC Innovation and Knowledge Centre Phase 2Authors: Mehran Eskandari Torbaghan; Manu Sasidharan; Manu Sasidharan;Railway track infrastructure asset management is a challenging problem with added values on safety, society and environment. With railways serving as a key sustainable mode of transportation for passengers and freight, the industry is facing an increasing demand to expand its capacity, availability and speed, resulting in faster deterioration of the ageing railway track infrastructure. Given the constrained maintenance budgets and the environmental challenges posed by climate change, railway asset managers have to identify economically and environmentally justifiable track maintenance strategies without compromising on safety. To this end, this paper proposes a risk-informed approach to arrive at sustainable railway track maintenance strategies while considering the associated track maintenance costs and impacts on train operation (environmental emissions and risk of derailments). Monte Carlo simulation is employed to address data uncertainties associated with track quality data, the costs and benefits of track maintenance and train operation. The proposed approach is successfully applied to the heavy-haul railway lines in Sweden and Australia to compare some alternative maintenance strategies and identify the sustainable one.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jinam.20.00018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jinam.20.00018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | PREPARE: Enhancing PREPar...UKRI| PREPARE: Enhancing PREParedness for East African Countries through Seismic Resilience EngineeringFelix Okonta; Innocent Kafodya; Innocent Kafodya; Panos Kloukinas; Panos Kloukinas;Adobe masonry construction constitutes a notable portion of the buildings in both urban and rural areas in less developed countries. Seismic performance of adobe buildings is poor, and low-cost retrofitting measures are required to enhance the resilience of such buildings during an earthquake. In this study, mechanical properties of fiber reinforced and unreinforced adobe masonry were investigated. Sisal fibers with length of 25 mm were used as reinforcing elements for mortar and adobe bricks at a fiber content of 0.75%. A series of laboratory tests were performed on masonry triplets, couplets and prisms to determine shear strength, tensile resistance and compressive strength, respectively. Uniaxial compression and diagonal compression shear tests were performed on wallets and wall panels, respectively to determine compressive strength and shear strength of the adobe masonry. Finite element linear elastic analysis was conducted using ANSYS Finite-Element code to evaluate the stress state of loaded wall panels. The structural design of adobe masonry walls was carried out according to BS5628 and Eurocode 6 standards, by utilising material properties acquired from the experiments. The results showed that fiber inclusion in the mortar caused an increase in tensile strength of 31%, friction coefficient of 22%, and prism compressive strength of 25% compared with unreinforced mortar. The reinforced wallets exhibited a twofold increase in compressive strength while reinforced wall panels indicated threefold increase in shear strength. The stress state in the reinforced and unreinforced wall panels was not a pure shear state and was better described by RILEM recommendations. The allowable vertical load resistance was found to be 40 kN/m and 100 kN/m for unreinforced and reinforced walls, respectively. The allowable lateral shear resistance was found to be 25 kN/m and 80 kN/m for unreinforced and reinforced walls, respectively. Reinforced masonry elements exhibited considerable ductility and unreinforced masonry elements showed brittle behaviour.
Journal of Building ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Journal of Building EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 174 Powered bymore_vert Journal of Building ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Journal of Building EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100904&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development of a Novel Se...UKRI| Development of a Novel Self-Healing Composite for Sustainable and Resilient Concrete InfrastructureAuthors: Hui Zhong; Alzain AlHuwaidi; Yihan Zhang; Mingzhong Zhang;Utilising crumb rubber from waste tyres to replace silica sand in engineered geopolymer composites (EGC) can reduce the environmental impact caused by landfilling and burning the tyres as well as that induced by exhausting the natural resources. This paper presents a systematic study on the effect of partially replacing silica sand with crumb rubber (10–40 %) on the engineering properties of EGC, with special focus on deflection-hardening behaviour. Results indicate that the workability, density, ultrasonic pulse velocity, drying shrinkage resistance, and compressive and flexural strengths of EGC drop with the increasing crumb rubber content. Regardless of crumb rubber content, all studied EGC mixes exhibit pronounced deflection-hardening and multiple cracking characteristics. Replacing 10 % of silica sand with crumb rubber can lead to acceptable compressive and flexural strengths of EGC. The crack width of EGC containing crumb rubber after flexural loading ranges from around 39 µm to 68 µm, which is lower than that of EGC with silica sand only. The presence of crumb rubber can lead to more PVA fibres pulled out and the rubber at the cracking interface may contribute to restraining the crack growth, which is conducive to improving the flexural toughness of EGC and reducing crack width.
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2023.133878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2023.133878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu