- home
- Advanced Search
- Energy Research
- civil engineering
- 12. Responsible consumption
- 11. Sustainability
- 6. Clean water
- Energy Research
- civil engineering
- 12. Responsible consumption
- 11. Sustainability
- 6. Clean water
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Syakirah Afiza Mohammed; Suhana Koting; Herda Yati Binti Katman; Ali Mohammed Babalghaith; +3 AuthorsSyakirah Afiza Mohammed; Suhana Koting; Herda Yati Binti Katman; Ali Mohammed Babalghaith; Muhamad Fazly Abdul Patah; Mohd Rasdan Ibrahim; Mohamed Rehan Karim;doi: 10.3390/su13148031
One effective method to minimize the increasing cost in the construction industry is by using coal bottom ash waste as a substitute material. The high volume of coal bottom ash waste generated each year and the improper disposal methods have raised a grave pollution concern because of the harmful impact of the waste on the environment and human health. Recycling coal bottom ash is an effective way to reduce the problems associated with its disposal. This paper reviews the current physical and chemical and utilization of coal bottom ash as a substitute material in the construction industry. The main objective of this review is to highlight the potential of recycling bottom ash in the field of civil construction. This review encourages and promotes effective recycling of coal bottom ash and identifies the vast range of coal bottom ash applications in the construction industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13148031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13148031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Lifeng Shen; Hui Xu; Jianping Zhai; Mengqun Zhang; Qin Li;pmid: 19853434
In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2009.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2009.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Theodoros Chrysanidis; Dimitra Mousama; Eleni Tzatzo; Nikolaos Alamanis; Dimos Zachos;doi: 10.3390/su141610076
Greece is divided into three earthquake hazard zones: Zone I, Zone II and Zone III. In the present research work, the same building in the three seismic zones in Greece was modeled, analyzed and dimensioned. Then, the construction cost of its structural body was estimated. The building modeling was performed in SAP2000 using frame elements. The analysis of the building was performed by dynamic spectral analysis methods using the design spectrum EC8. A five-story building with a standard rectangular floor plan per floor was used. The purpose of this research paper is to demonstrate whether the cost of construction of a load-bearing body of a reinforced concrete (R/C) building is influenced by the area of an earthquake hazard through a comparative analytical estimation of construction costs. It was determined if this impact is important and to what extent. Helpful conclusions were drawn in relation to the influence of seismicity on the construction cost of the load-bearing structure of R/C buildings. Furthermore, the probable environmental impact was examined.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yehualaw, Mitiku Damtie; Alemu, Mihiret; Hailemariam, Behailu Zerihun; Vo, Duy-Hai; +2 AuthorsYehualaw, Mitiku Damtie; Alemu, Mihiret; Hailemariam, Behailu Zerihun; Vo, Duy-Hai; Taffese; Woubishet Zewdu;doi: 10.3390/su142315501
Ordinary Portland cement (OPC) is the primary binder of concrete, accounting for approximately 5% to 7% of greenhouse gas (GHG) and carbon dioxide (CO2) emissions with an annual production rate of more than 4 billion tons. It is critical to reduce the carbon footprint of concrete without sacrificing its performance. To this end, this study focuses on the use of water hyacinth ash (WHA) as a pozzolanic binder in the production of concrete as a partial replacement for cement. Four mixes are designed to achieve C-25-grade concrete with varying proportions of cement replacement with WHA of 0%, 5%, 10%, and 15% of the cement weight. Extensive experiments are performed to examine the workability, strength, durability, and microstructure of concrete specimens. The test results confirm that incorporating WHA in concrete improved its workability, strength, and durability. The optimal results are obtained at the maximum OPC replacement level, with 10% WHA. The use of WHA as a partial replacement for cement greatly reduces the energy required for cement production and preserves natural resources. More research is needed to use WHA on a large scale to achieve greater sustainability in the concrete industry.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Menna C.; Felicioni L.; Negro P.; Lupisek A.; Romano E.; Prota A.; Hajek P.;handle: 11588/866049 , 11585/844276
Abstract Sustainable retrofitting of existing buildings is a prerequisite for achieving climatic and energy objectives in the EU. Thus, practical tools supporting the evaluation and decision-making process when planning retrofit interventions are required. In specific areas, in addition to energy efficiency, the improvement in building resilience to natural hazards is requested; in several European regions, seismicity poses a significant hazard. This study aims to analyse the state-of-the-art of the integrated methods for the implementation of structural and energy retrofitting. The work consists of reviewing available tools, international sustainability protocols, and methods specifically developed for combined energy and seismic assessment. In the first group of methods, assessment is independently referred to specific criteria for energy performance and seismic safety, quantified according to available codes. Besides, in a second group, integrated evaluation is achieved considering ‘equivalent’ initial or life-cycle costs associated with energy consumption and seismic vulnerability. The collected methods were evaluated for qualitative requirements for optimal integration, such as multidisciplinary, life-cycle approaches, and other indicators. Finally, a critical evaluation is provided, highlighting what can be used for future developments toward a sustainable and resilient retrofitting of existing European buildings.
Archivio istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.103556&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.103556&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Chao Jiang; Jing Fang;doi: 10.3390/su12031187
This paper assessed the service life of RC bridges subjected to carbonation under a changing climate based on time-dependent reliability analysis. First, a simplified carbonation model and the corresponding incremental method were briefly reviewed. Then, the fatigue damage prediction model and climate model were briefly introduced. Afterward, the Monte Carlo simulation-based time-dependent reliability analysis procedure for service life assessments was presented, which integrated the carbonation depth prediction model, fatigue damage prediction model and climate model. Based on the analysis procedure, a comprehensive case study was conducted to estimate the effects of climate change, fatigue damage, concrete cover thickness and concrete grade on the service life under different reliability levels. The case study showed that the service life under a reliability level of 2 is around half of that under the reliability level of 1. Under the reliability level of 1.5, the service life under RCP8.5 (a high emission scenario defined by Intergovernmental Panel on Climate Change) can be 28 years shorter than that under no climate changes. The service life at girder top undergoing compressive fatigue damage can be 49% shorter than that without fatigue damage and 25 years shorter than that at girder bottom undergoing tensile fatigue damage. The service life at girder top with a concrete cover thickness of 45 mm can reach 2.6 times that with a concrete cover thickness of 25 mm. The service life of C50 concrete can reach approximately 2–3 times that of C30 concrete. These findings inform civil engineers that for existing RC bridges, the effects of climate change and fatigue damage should be properly considered when the remaining service life of RC bridges is concerned. Moreover, for planned RC bridges, higher concrete grade and thicker concrete cover are two effective choices to achieve a longer service life.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/3/1187/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12031187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/3/1187/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12031187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Meheddene Machaka; Jamal Khatib; Safaa Baydoun; Adel Elkordi; Joseph J. Assaad;Nowadays, the increasing demand for concrete is causing serious environmental impact including pollution and waste generation, rapid depletion of natural resources, and increased CO2 emission. Incorporating natural fibers in concrete can contribute toward environmental sustainability. This paper is concerned with the use of natural fibers obtained from the plant species Phragmites australis (PA). The plant is invasive, and rapidly grows abundantly along rivers and waterways, causing major ecological problems. This research is part of a wide range investigation on the use of natural fibers produced from the stem of PA plants in concrete. Using a machine, plant stems were crushed into fibers measuring 40 mm in length and 2 mm in width, and treated with 4% NaOH solution for 24 h. A total of four concrete mixes were prepared with varying additions of treated fibers, ranging from 0% to 1.5% (by volume) with water to cement ratio of 0.5% (by volume). Concrete specimens were tested at 3, 7, and 28 days. Testing included compressive strength, density, total water absorption, and capillary water absorption. The results show that incorporating PA natural fibers reduces the water absorption by total immersion and capillary action by up to 45%. Moreover, there is a negligible decrease in concrete density and strength when fibers were added. It is concluded that adding up to 1.5% natural PA fibers to concrete is a feasible strategy to produce an eco-friendly material which can be used in the production of sustainable building material with adequate mechanical and durability performance.
Buildings arrow_drop_down BuildingsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2075-5309/12/3/278/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings12030278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2075-5309/12/3/278/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings12030278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 China (People's Republic of)Publisher:MDPI AG Liang, Ruifeng; Hota, Gangarao; Lei, Ying; Li, Yanhao; Stanislawski, Daniel; Jiang, Yongqiang;doi: 10.3390/su5010298
The in-service Hakka rammed earth buildings, in the Fujian Province of China, are unique in design and performance. Their UNESCO’s inscription as World Heritage sites recognizes their artistic, cultural, social and historic significance. Sponsored by the National Science Foundation of the United States, the authors have examined the engineering values of these buildings in terms of comfortable living at low energy consumption, sustainability and durability. The objective of this study was to better understand the thermo-mechanical and aging responses of Hakka earth buildings under thermal and earthquake loads through nondestructive field evaluation, including full-scale roof truss and floor testing, laboratory testing of field samples and finite element modeling. This paper presents our observations and findings from the field nondestructive evaluations with emphasis on the integrity of the rammed earth outer walls and inner wood structures, as well as the thermal comfort of living in these buildings, while a second paper presents the results from the material characterization of field samples and the structural responses of a representative building under earthquake induced loads through finite element analysis.
Sustainability arrow_drop_down SustainabilityOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/2071-1050/5/1/298/pdfData sources: Multidisciplinary Digital Publishing InstituteXiamen University Institutional RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su5010298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/2071-1050/5/1/298/pdfData sources: Multidisciplinary Digital Publishing InstituteXiamen University Institutional RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su5010298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Tam, Svetlana; Wong, Jenna;doi: 10.3390/su13084278
Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4278/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4278/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Thainara de Lima Arruda; Fabiana Pereira da Costa; Rebeca Cavalcante Diniz; Alisson Mendes Rodrigues; +2 AuthorsThainara de Lima Arruda; Fabiana Pereira da Costa; Rebeca Cavalcante Diniz; Alisson Mendes Rodrigues; Romualdo Rodrigues Menezes; Gelmires de Araújo Neves;doi: 10.3390/su151511544
This study focuses on addressing the challenge of society’s consumer demands through sustainable production processes, as outlined by Sustainable Development Goal 12 established by the United Nations. In this context, this study aims to assess the durability of eco-friendly mortars with mineral waste as alternative raw materials, considering the alkali-aggregate reaction (AAR). For this purpose, scheelite tailing (ST) was used to partially replace Portland cement (PC), and quartzite sand (QS) was used to fully replace conventional sand. The ST was ground and sieved (<75 μm), and part of it was used in its natural form, while the other part was calcined (1000 °C for 1 h). A mixture experimental design was created to select the compositions with the best mechanical performance. All the mortar mixtures were produced with a cementitious material to QS ratio of 1:3. Three mortar compositions (0% ST, 30% natural ST, and 30% calcined ST) were selected to study the resistance to the AAR. Linear expansion measurements, compressive strength tests, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were conducted to evaluate the phases formed and the mechanical behavior of the mortars in relation to the AAR. The expansion results demonstrated that QS does not exhibit deleterious potential. Regarding the use of ST, the results indicated that it is possible to partially replace PC with calcined ST without significantly compromising the mechanical performance and durability of the mortars. However, the use of non-calcined ST is not recommended, as it presents deleterious effects on the mechanical properties of the mortars. This study highlights a new sustainable mortar alternative for use in construction without future degradation of its properties.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Syakirah Afiza Mohammed; Suhana Koting; Herda Yati Binti Katman; Ali Mohammed Babalghaith; +3 AuthorsSyakirah Afiza Mohammed; Suhana Koting; Herda Yati Binti Katman; Ali Mohammed Babalghaith; Muhamad Fazly Abdul Patah; Mohd Rasdan Ibrahim; Mohamed Rehan Karim;doi: 10.3390/su13148031
One effective method to minimize the increasing cost in the construction industry is by using coal bottom ash waste as a substitute material. The high volume of coal bottom ash waste generated each year and the improper disposal methods have raised a grave pollution concern because of the harmful impact of the waste on the environment and human health. Recycling coal bottom ash is an effective way to reduce the problems associated with its disposal. This paper reviews the current physical and chemical and utilization of coal bottom ash as a substitute material in the construction industry. The main objective of this review is to highlight the potential of recycling bottom ash in the field of civil construction. This review encourages and promotes effective recycling of coal bottom ash and identifies the vast range of coal bottom ash applications in the construction industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13148031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13148031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Lifeng Shen; Hui Xu; Jianping Zhai; Mengqun Zhang; Qin Li;pmid: 19853434
In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2009.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2009.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Theodoros Chrysanidis; Dimitra Mousama; Eleni Tzatzo; Nikolaos Alamanis; Dimos Zachos;doi: 10.3390/su141610076
Greece is divided into three earthquake hazard zones: Zone I, Zone II and Zone III. In the present research work, the same building in the three seismic zones in Greece was modeled, analyzed and dimensioned. Then, the construction cost of its structural body was estimated. The building modeling was performed in SAP2000 using frame elements. The analysis of the building was performed by dynamic spectral analysis methods using the design spectrum EC8. A five-story building with a standard rectangular floor plan per floor was used. The purpose of this research paper is to demonstrate whether the cost of construction of a load-bearing body of a reinforced concrete (R/C) building is influenced by the area of an earthquake hazard through a comparative analytical estimation of construction costs. It was determined if this impact is important and to what extent. Helpful conclusions were drawn in relation to the influence of seismicity on the construction cost of the load-bearing structure of R/C buildings. Furthermore, the probable environmental impact was examined.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yehualaw, Mitiku Damtie; Alemu, Mihiret; Hailemariam, Behailu Zerihun; Vo, Duy-Hai; +2 AuthorsYehualaw, Mitiku Damtie; Alemu, Mihiret; Hailemariam, Behailu Zerihun; Vo, Duy-Hai; Taffese; Woubishet Zewdu;doi: 10.3390/su142315501
Ordinary Portland cement (OPC) is the primary binder of concrete, accounting for approximately 5% to 7% of greenhouse gas (GHG) and carbon dioxide (CO2) emissions with an annual production rate of more than 4 billion tons. It is critical to reduce the carbon footprint of concrete without sacrificing its performance. To this end, this study focuses on the use of water hyacinth ash (WHA) as a pozzolanic binder in the production of concrete as a partial replacement for cement. Four mixes are designed to achieve C-25-grade concrete with varying proportions of cement replacement with WHA of 0%, 5%, 10%, and 15% of the cement weight. Extensive experiments are performed to examine the workability, strength, durability, and microstructure of concrete specimens. The test results confirm that incorporating WHA in concrete improved its workability, strength, and durability. The optimal results are obtained at the maximum OPC replacement level, with 10% WHA. The use of WHA as a partial replacement for cement greatly reduces the energy required for cement production and preserves natural resources. More research is needed to use WHA on a large scale to achieve greater sustainability in the concrete industry.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Menna C.; Felicioni L.; Negro P.; Lupisek A.; Romano E.; Prota A.; Hajek P.;handle: 11588/866049 , 11585/844276
Abstract Sustainable retrofitting of existing buildings is a prerequisite for achieving climatic and energy objectives in the EU. Thus, practical tools supporting the evaluation and decision-making process when planning retrofit interventions are required. In specific areas, in addition to energy efficiency, the improvement in building resilience to natural hazards is requested; in several European regions, seismicity poses a significant hazard. This study aims to analyse the state-of-the-art of the integrated methods for the implementation of structural and energy retrofitting. The work consists of reviewing available tools, international sustainability protocols, and methods specifically developed for combined energy and seismic assessment. In the first group of methods, assessment is independently referred to specific criteria for energy performance and seismic safety, quantified according to available codes. Besides, in a second group, integrated evaluation is achieved considering ‘equivalent’ initial or life-cycle costs associated with energy consumption and seismic vulnerability. The collected methods were evaluated for qualitative requirements for optimal integration, such as multidisciplinary, life-cycle approaches, and other indicators. Finally, a critical evaluation is provided, highlighting what can be used for future developments toward a sustainable and resilient retrofitting of existing European buildings.
Archivio istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.103556&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.103556&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Chao Jiang; Jing Fang;doi: 10.3390/su12031187
This paper assessed the service life of RC bridges subjected to carbonation under a changing climate based on time-dependent reliability analysis. First, a simplified carbonation model and the corresponding incremental method were briefly reviewed. Then, the fatigue damage prediction model and climate model were briefly introduced. Afterward, the Monte Carlo simulation-based time-dependent reliability analysis procedure for service life assessments was presented, which integrated the carbonation depth prediction model, fatigue damage prediction model and climate model. Based on the analysis procedure, a comprehensive case study was conducted to estimate the effects of climate change, fatigue damage, concrete cover thickness and concrete grade on the service life under different reliability levels. The case study showed that the service life under a reliability level of 2 is around half of that under the reliability level of 1. Under the reliability level of 1.5, the service life under RCP8.5 (a high emission scenario defined by Intergovernmental Panel on Climate Change) can be 28 years shorter than that under no climate changes. The service life at girder top undergoing compressive fatigue damage can be 49% shorter than that without fatigue damage and 25 years shorter than that at girder bottom undergoing tensile fatigue damage. The service life at girder top with a concrete cover thickness of 45 mm can reach 2.6 times that with a concrete cover thickness of 25 mm. The service life of C50 concrete can reach approximately 2–3 times that of C30 concrete. These findings inform civil engineers that for existing RC bridges, the effects of climate change and fatigue damage should be properly considered when the remaining service life of RC bridges is concerned. Moreover, for planned RC bridges, higher concrete grade and thicker concrete cover are two effective choices to achieve a longer service life.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/3/1187/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12031187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/3/1187/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12031187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Meheddene Machaka; Jamal Khatib; Safaa Baydoun; Adel Elkordi; Joseph J. Assaad;Nowadays, the increasing demand for concrete is causing serious environmental impact including pollution and waste generation, rapid depletion of natural resources, and increased CO2 emission. Incorporating natural fibers in concrete can contribute toward environmental sustainability. This paper is concerned with the use of natural fibers obtained from the plant species Phragmites australis (PA). The plant is invasive, and rapidly grows abundantly along rivers and waterways, causing major ecological problems. This research is part of a wide range investigation on the use of natural fibers produced from the stem of PA plants in concrete. Using a machine, plant stems were crushed into fibers measuring 40 mm in length and 2 mm in width, and treated with 4% NaOH solution for 24 h. A total of four concrete mixes were prepared with varying additions of treated fibers, ranging from 0% to 1.5% (by volume) with water to cement ratio of 0.5% (by volume). Concrete specimens were tested at 3, 7, and 28 days. Testing included compressive strength, density, total water absorption, and capillary water absorption. The results show that incorporating PA natural fibers reduces the water absorption by total immersion and capillary action by up to 45%. Moreover, there is a negligible decrease in concrete density and strength when fibers were added. It is concluded that adding up to 1.5% natural PA fibers to concrete is a feasible strategy to produce an eco-friendly material which can be used in the production of sustainable building material with adequate mechanical and durability performance.
Buildings arrow_drop_down BuildingsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2075-5309/12/3/278/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings12030278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2075-5309/12/3/278/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings12030278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 China (People's Republic of)Publisher:MDPI AG Liang, Ruifeng; Hota, Gangarao; Lei, Ying; Li, Yanhao; Stanislawski, Daniel; Jiang, Yongqiang;doi: 10.3390/su5010298
The in-service Hakka rammed earth buildings, in the Fujian Province of China, are unique in design and performance. Their UNESCO’s inscription as World Heritage sites recognizes their artistic, cultural, social and historic significance. Sponsored by the National Science Foundation of the United States, the authors have examined the engineering values of these buildings in terms of comfortable living at low energy consumption, sustainability and durability. The objective of this study was to better understand the thermo-mechanical and aging responses of Hakka earth buildings under thermal and earthquake loads through nondestructive field evaluation, including full-scale roof truss and floor testing, laboratory testing of field samples and finite element modeling. This paper presents our observations and findings from the field nondestructive evaluations with emphasis on the integrity of the rammed earth outer walls and inner wood structures, as well as the thermal comfort of living in these buildings, while a second paper presents the results from the material characterization of field samples and the structural responses of a representative building under earthquake induced loads through finite element analysis.
Sustainability arrow_drop_down SustainabilityOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/2071-1050/5/1/298/pdfData sources: Multidisciplinary Digital Publishing InstituteXiamen University Institutional RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su5010298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/2071-1050/5/1/298/pdfData sources: Multidisciplinary Digital Publishing InstituteXiamen University Institutional RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su5010298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Tam, Svetlana; Wong, Jenna;doi: 10.3390/su13084278
Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4278/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4278/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Thainara de Lima Arruda; Fabiana Pereira da Costa; Rebeca Cavalcante Diniz; Alisson Mendes Rodrigues; +2 AuthorsThainara de Lima Arruda; Fabiana Pereira da Costa; Rebeca Cavalcante Diniz; Alisson Mendes Rodrigues; Romualdo Rodrigues Menezes; Gelmires de Araújo Neves;doi: 10.3390/su151511544
This study focuses on addressing the challenge of society’s consumer demands through sustainable production processes, as outlined by Sustainable Development Goal 12 established by the United Nations. In this context, this study aims to assess the durability of eco-friendly mortars with mineral waste as alternative raw materials, considering the alkali-aggregate reaction (AAR). For this purpose, scheelite tailing (ST) was used to partially replace Portland cement (PC), and quartzite sand (QS) was used to fully replace conventional sand. The ST was ground and sieved (<75 μm), and part of it was used in its natural form, while the other part was calcined (1000 °C for 1 h). A mixture experimental design was created to select the compositions with the best mechanical performance. All the mortar mixtures were produced with a cementitious material to QS ratio of 1:3. Three mortar compositions (0% ST, 30% natural ST, and 30% calcined ST) were selected to study the resistance to the AAR. Linear expansion measurements, compressive strength tests, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were conducted to evaluate the phases formed and the mechanical behavior of the mortars in relation to the AAR. The expansion results demonstrated that QS does not exhibit deleterious potential. Regarding the use of ST, the results indicated that it is possible to partially replace PC with calcined ST without significantly compromising the mechanical performance and durability of the mortars. However, the use of non-calcined ST is not recommended, as it presents deleterious effects on the mechanical properties of the mortars. This study highlights a new sustainable mortar alternative for use in construction without future degradation of its properties.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu