- home
- Advanced Search
- Energy Research
- mechanical engineering
- Energy Research
- mechanical engineering
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Nils Langenberg;
Nils Langenberg
Nils Langenberg in OpenAIRESimon Kimpeler;
Simon Kimpeler
Simon Kimpeler in OpenAIREAlbert Moser;
Albert Moser
Albert Moser in OpenAIREAdvances in medium voltage direct current (MVDC) technologies and the penetration of extended MVDC systems are still significantly hindered by the lack of adequate direct current (DC) switching equipment. The fundamentally different fault current behavior in case of a DC fault, compared to faults in alternating current (AC) systems, with regard to the characteristics and development of fault currents and their interruption make dedicated test procedures necessary. One testing approach is the application of a power-electronic buck converter (PEBC) to simulate relevant stresses on DC switching equipment during a DC fault current interruption. Since the associated requirements, especially regarding current ratings of several kiloamperes, cannot be fulfilled by using a singular PEBC, a modularization becomes necessary. However, particularly in high-power applications, the interconnection of several PEBC modules poses significant challenges. In this article, a demonstrator PEBC-based high-power test circuit for the provision of relevant testing parameters is presented. The underlying challenges and respective solutions with regard to the interconnection of, in total, 120 individual PEBC modules are discussed. It can be shown that the harmonization of connection busbar inductances is the main contributor towards a stable and safe test circuit operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu