- home
- Advanced Search
Filters
Clear All- Energy Research
- chemical engineering
- 13. Climate action
- 7. Clean energy
- Italian
- Energy Research
- chemical engineering
- 13. Climate action
- 7. Clean energy
- Italian
description Publicationkeyboard_double_arrow_right Conference object 2016 ItalyPublisher:Sezione Italiana del Combustion Institute, Napoli, ITA Funded by:EC | Residue2HeatEC| Residue2HeatAuthors: Vincenzo Moccia; Jacopo D'Alessio;Experimental evaluation of the combustion characteristics of carbon-neutral, biomass-derived fuels has been carried out. Since these fuels are meant as likely replacement for CH4, a comparison was drawn with methane in the same operating conditions. Tests were performed in the high-pressure, constant-volume DHARMA reactor at Istituto Motori - CNR. The laminar burning parameters were evaluated analyzing spherical expanding flames. The flame growth was recorded by means of high-speed, high-resolution shadowgraph; image processing and stretch analysis allowed to infer the laminar burning velocity and the Markstein length for each test case. Results are presented for the combustion in air of CH4-CO2 (55-45 % vol.), H2-CO (5-95 % vol.) and a wood gasification product. All the tests were performed at 0.6 MPa and 301 K. The equivalence ratio ranged between 1.0 and the lower flammable limit. The unstretched laminar burning velocity and the Markstein length are reported for each fuel as a function of the equivalence ratio.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::ec5b6ef515bdca46232394a921aadf04&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::ec5b6ef515bdca46232394a921aadf04&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object 2016 ItalyPublisher:Sezione Italiana del Combustion Institute, Napoli, ITA Funded by:EC | Residue2HeatEC| Residue2HeatAuthors: Vincenzo Moccia; Jacopo D'Alessio;Experimental evaluation of the combustion characteristics of carbon-neutral, biomass-derived fuels has been carried out. Since these fuels are meant as likely replacement for CH4, a comparison was drawn with methane in the same operating conditions. Tests were performed in the high-pressure, constant-volume DHARMA reactor at Istituto Motori - CNR. The laminar burning parameters were evaluated analyzing spherical expanding flames. The flame growth was recorded by means of high-speed, high-resolution shadowgraph; image processing and stretch analysis allowed to infer the laminar burning velocity and the Markstein length for each test case. Results are presented for the combustion in air of CH4-CO2 (55-45 % vol.), H2-CO (5-95 % vol.) and a wood gasification product. All the tests were performed at 0.6 MPa and 301 K. The equivalence ratio ranged between 1.0 and the lower flammable limit. The unstretched laminar burning velocity and the Markstein length are reported for each fuel as a function of the equivalence ratio.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::ec5b6ef515bdca46232394a921aadf04&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::ec5b6ef515bdca46232394a921aadf04&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu