- home
- Advanced Search
- Energy Research
- nano-technology
- 7. Clean energy
- Energy Research
- nano-technology
- 7. Clean energy
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Ieuan Collins; Mokarram Hossain; Wulf Dettmer; Ian Masters;Abstract In the last decade, there has been a growing trend towards flexible body wave energy converters (WECs) enabled by rubber-like elastomeric composite membrane structures that can simplify all aspects of WEC design. Currently, there are few literature studies detailing the implementations of membranes into WEC design. This paper aims to overcome this by reviewing the developments, material selection and modelling procedures for novel membrane based wave energy converters (mWECs), providing the reader with a comprehensive overview of the current state of the technology. In the first half of this paper, all of the possible WEC implementation areas are reviewed which include the primary mover, power take-off (PTO) and other sub-assembly systems. For the primary mover, the review has identified three main working surface approaches using membranes, these are: air-filled cells, water filled tubes and tethered carpets; which aim to reduce peak loads for enhanced reliability and survivability. In other areas, the PTO of WECs can benefit from using soft dielectric elastomer generators (DEGs) which offer a simpler designs compared with conventional mechanical turbomachinery. These have been implemented into the membrane working surface as well as replacing the PTO in existing WEC architectures. In the second half of the paper, a discussion is made on the material selection requirements with a few possible compositions presented. Following this, the potential modelling procedures for these devices is detailed. The device numerical models have altered existing procedures to take into account the non-linearities caused by the membrane interface and membrane PTO damping.
Cronfa at Swansea Un... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Cronfa at Swansea Un... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), Hong KongPublisher:Wiley Authors: Xiaoqiong Du; Yao Gao; Biao Zhang;handle: 10397/95698
AbstractAlloy anodes composed of microsized particles receive increasing attention recently, which outperform the nanostructured counterparts in both the manufacturing cost and volumetric energy density. However, the pulverization of particles and fracture of solid electrolyte interphase (SEI) during cycling brings about fast capacity degradation. Herein, it is shown how normally considered fragile SEI can become highly elastic through electrolyte chemistry regulation. Compared to the SEI constructed in classic carbonate electrolyte, the atomic force microscopy tests reveal that the one built in ether‐based electrolyte doubles the maximum elastic strain to accommodate the repeated swelling‐contracting. Such an SEI effectively encapsulates the microsized Sb anodes to prevent the capacity loss from particle isolation. Coupled with an intercalation‐assisted alloying reaction mechanism, a sustained capacity of ≈573 mAh g−1 after 180 cycles at 0.1 A g−1 with outstanding initial Coulombic efficiency is obtained, which is among the highest values achieved in K‐ion batteries. This study emphasizes the significance of building robust SEI, which offers the opportunity to enable stable microsized alloy anodes.
Advanced Functional ... arrow_drop_down Advanced Functional MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202102562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Functional ... arrow_drop_down Advanced Functional MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202102562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 South AfricaPublisher:MDPI AG Authors: Rorisang Mabindisa; Kevin Tambwe; Lulama Mciteka; Natasha Ross;doi: 10.3390/app112311324
handle: 10566/7079
Meeting our current energy demands requires a reliable and efficient renewable energy source that will bring balance between power generation and energy consumption. Organic photovoltaic cells (OPVs), perovskite solar cells and dye-sensitized solar cells (DSSCs) are among the next-generation technologies that are progressing as potential sustainable renewable energy sources. Since the discoveries of highly conductive organic charge-transfer compounds in the 1950s, organic semiconductors have captured attention. Organic photovoltaic solar cells possess key characteristics ideal for emerging next-generation technologies such as being nontoxic, abundant, an inexpensive nanomaterial with ease of production, including production under ambient conditions. In this review article, we discuss recent methods developed towards improving the stability and average efficiency of nanostructured materials in OPVs aimed at sustainable agriculture and improve land-use efficiency. A comprehensive overview on developing cost-effective and user-friendly organic solar cells to contribute towards improved environmental stability is provided. We also summarize recent advances in the synthetic methods used to produce nanostructured active absorber layers of OPVs with improved efficiencies to supply the energy required towards ending poverty and protecting the planet.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app112311324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app112311324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, FinlandPublisher:Elsevier BV Shah, M. A.K.Yousaf; Lu, Yuzheng; Mushtaq, Naveed; Rauf, Sajid; Yousaf, Muhammad; Asghar, Muhammad Imran; Lund, Peter D.; Zhu; Bin;Funding Information: This work was supported Southeast University (SEU) project 3203002003A1 and National Natural Science Foundation of China (NSFC) under the grant 51772080 and 11604088 . Jiangsu Provincial Innovation and Entrepreneurship Talent program Project No. JSSCRC2021491 . Industry-University-Research Cooperation Project of Jiangsu Province in China , Grant No. BY2021057 . Dr. Asghar thanks the Hubei Talent 100 program and Academy of Finland ( 13329016 , 13322738 ) for their financial support. Publisher Copyright: © 2022 The Authors Electrolytes with high-proton conduction and low activation energy are attractive for reducing the high operating temperature of solid-oxide fuel cells to less than <600 °C. In this work, we have fabricated semiconducting electrolyte SrFeTiO3-δ (SFT) material exhibiting high ionic conduction and exceptionally high protonic conduction at low operating temperature but with low electronic conduction to evade the short-circuiting issue. The prepared fuel cell device exhibited high open-circuit voltage (OCV) and a high-power output of 534 mW/cm2, of which 474 mW/cm2 could be for sure be related to the protonic part. The current study suggests that usage of semiconductor SrFeTiO3-δ facilitates a high concentration of oxygen vacancies on the surface of SFT, which mainly benefits proton conduction. Moreover, lower grain boundary resistance leads to obtain higher performance. Also, the Schottky junction phenomena are proposed to inhibit the e-conduction and excel the ions transportation. The high performance and ionic conductivity suggest that SFT could be a promising electrolyte for protonic ceramic fuel cells. Peer reviewed
Renewable Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Mehran Minbashi; Arash Ghobadi; Nafiseh Memarian; H. Rezagholipour Dizaji; M.H. Ehsani;Abstract In this paper, we designed, simulated and analyzed high efficiency of SnS-based solar cells. This work is related to the influence of a glancing angle deposition (GLAD) technique for deposition of SnS layer, on the photovoltaic performance of SnS-based solar cells. The photovoltaic parameters have been calculated for the samples prepared at different oblique incident flux angles (α = 0°, 45°, 55°, 65°, 75°, and 85°). The best efficiency was found for the sample prepared at α = 85°. We simulated the J-V characteristics and showed how the absorber layer that prepared by GLAD technique at different incident flux angles, influence the short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) of solar cell.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.10.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.10.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV Authors: Scott Morrison; Arun Madan;Abstract The cost of amorphous silicon solar panels are dictated by the deposition rate, the utilization rate of the silane gas and stability issues. In this context, we present data of amorphous silicon materials and solar cells using pulsed plasma PECVD (plasma enhanced chemical vapor deposition) technique with the i-layer fabricated with high deposition rates. “Hot-Wire” CVD deposition technique has attracted a considerable amount of interest because of the ability to produce amorphous silicon at high deposition rates and with low hydrogen concentration of H which could minimize the stability phenomena. Further, under suitable conditions, low-temperature polycrystalline silicon can be produced. We present data of high deposition rates of polycrystalline Si (∼10 A/s) and discuss its potential usefulness in a hybrid tandem (combination of amorphous and polycrystalline) junctions.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0927-0248(98)00053-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0927-0248(98)00053-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: André Stapf; Edwin Kroke; Christoph Gondek; Florian Honeit;Abstract Solutions containing hydrofluoric acid (HF), hydrochloric acid (HCl), and hydrogen peroxide (H2O2) were investigated as novel acidic, NOx-free etching mixtures for texturing of monocrystalline silicon wafers. High etch rates of up to 13.3 nm s−1 were observed at room temperature, which are comparable to the etch rates of KOH-IPA solutions. The silicon surface was investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), indicating pyramidal textures for diamond wire and SiC-slurry sawn as well as saw-damage etched (polished) wafers. Non-stirred baths generate random pyramidal structures while constantly stirred solutions generate novel random inverted pyramidal surface structures. The light trapping efficiency of wafers etched by the HF-HCl-H2O2 solutions was compared by UV/vis-reflectivity measurements to KOH/i-propanol specimens indicating lower reflectivities for the HF-HCl-H2O2-treated samples. Using the ‘wafer ray tracer’ (pvlighthouse.com) the light absorption properties of monomodal and random inverted pyramid structures were simulated and compared to well-known random and monomodal textures for PERC solar cells, clearly indicating the best performance for random inverted pyramids. Besides, simulation of a PERC solar cell on a roof top at our university was performed, indicating improved performance, especially for random inverted pyramid textures.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Publisher:Wiley Funded by:UKRI | Beyond biorecovery: envir...UKRI| Beyond biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)Jacob B. Omajai; I.P. Mikheenko; Joseph Wood; Alan J. Stephen; Lynne E. Macaskie;SummaryMicrobially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low‐grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio‐catalytic upgrading of oils and manufacturing ‘drop‐in fuel’ precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 JapanPublisher:Royal Society of Chemistry (RSC) Yuuki Sugawara; Takuya Hihara; Gopinathan M. Anilkumar; Keigo Kamata; Takeo Yamaguchi;doi: 10.1039/d0se01295e
Corrosion-resistive conductive titanium oxide exhibited remarkably higher durability than a carbon support during electrochemical catalytic reactions under high potential conditions.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01295e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01295e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 LatviaPublisher:Royal Society of Chemistry (RSC) Funded by:EC | CAMART2EC| CAMART2Martins Vanags; Guntis Kulikovskis; Juris Kostjukovs; Laimonis Jekabsons; Anatolijs Sarakovskis; Krisjanis Smits; Liga Bikse; Andris Šutka;doi: 10.1039/d1ee03982b
In the amphoteric membrane-less decoupled water electrolysis, hydrogen and oxygen are co-produced in separate cells with higher energy efficiency. Ion exchange is mediated by the auxiliary electrodes – HxWO3 for acid and NiOOH for alkaline cell.
Energy & Environment... arrow_drop_down E-resource repository of the University of LatviaArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)E-resource repository of the University of LatviaArticle . 2022Data sources: E-resource repository of the University of LatviaEnergy & Environmental ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03982b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down E-resource repository of the University of LatviaArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)E-resource repository of the University of LatviaArticle . 2022Data sources: E-resource repository of the University of LatviaEnergy & Environmental ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03982b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Ieuan Collins; Mokarram Hossain; Wulf Dettmer; Ian Masters;Abstract In the last decade, there has been a growing trend towards flexible body wave energy converters (WECs) enabled by rubber-like elastomeric composite membrane structures that can simplify all aspects of WEC design. Currently, there are few literature studies detailing the implementations of membranes into WEC design. This paper aims to overcome this by reviewing the developments, material selection and modelling procedures for novel membrane based wave energy converters (mWECs), providing the reader with a comprehensive overview of the current state of the technology. In the first half of this paper, all of the possible WEC implementation areas are reviewed which include the primary mover, power take-off (PTO) and other sub-assembly systems. For the primary mover, the review has identified three main working surface approaches using membranes, these are: air-filled cells, water filled tubes and tethered carpets; which aim to reduce peak loads for enhanced reliability and survivability. In other areas, the PTO of WECs can benefit from using soft dielectric elastomer generators (DEGs) which offer a simpler designs compared with conventional mechanical turbomachinery. These have been implemented into the membrane working surface as well as replacing the PTO in existing WEC architectures. In the second half of the paper, a discussion is made on the material selection requirements with a few possible compositions presented. Following this, the potential modelling procedures for these devices is detailed. The device numerical models have altered existing procedures to take into account the non-linearities caused by the membrane interface and membrane PTO damping.
Cronfa at Swansea Un... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Cronfa at Swansea Un... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), Hong KongPublisher:Wiley Authors: Xiaoqiong Du; Yao Gao; Biao Zhang;handle: 10397/95698
AbstractAlloy anodes composed of microsized particles receive increasing attention recently, which outperform the nanostructured counterparts in both the manufacturing cost and volumetric energy density. However, the pulverization of particles and fracture of solid electrolyte interphase (SEI) during cycling brings about fast capacity degradation. Herein, it is shown how normally considered fragile SEI can become highly elastic through electrolyte chemistry regulation. Compared to the SEI constructed in classic carbonate electrolyte, the atomic force microscopy tests reveal that the one built in ether‐based electrolyte doubles the maximum elastic strain to accommodate the repeated swelling‐contracting. Such an SEI effectively encapsulates the microsized Sb anodes to prevent the capacity loss from particle isolation. Coupled with an intercalation‐assisted alloying reaction mechanism, a sustained capacity of ≈573 mAh g−1 after 180 cycles at 0.1 A g−1 with outstanding initial Coulombic efficiency is obtained, which is among the highest values achieved in K‐ion batteries. This study emphasizes the significance of building robust SEI, which offers the opportunity to enable stable microsized alloy anodes.
Advanced Functional ... arrow_drop_down Advanced Functional MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202102562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Functional ... arrow_drop_down Advanced Functional MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefHong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202102562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 South AfricaPublisher:MDPI AG Authors: Rorisang Mabindisa; Kevin Tambwe; Lulama Mciteka; Natasha Ross;doi: 10.3390/app112311324
handle: 10566/7079
Meeting our current energy demands requires a reliable and efficient renewable energy source that will bring balance between power generation and energy consumption. Organic photovoltaic cells (OPVs), perovskite solar cells and dye-sensitized solar cells (DSSCs) are among the next-generation technologies that are progressing as potential sustainable renewable energy sources. Since the discoveries of highly conductive organic charge-transfer compounds in the 1950s, organic semiconductors have captured attention. Organic photovoltaic solar cells possess key characteristics ideal for emerging next-generation technologies such as being nontoxic, abundant, an inexpensive nanomaterial with ease of production, including production under ambient conditions. In this review article, we discuss recent methods developed towards improving the stability and average efficiency of nanostructured materials in OPVs aimed at sustainable agriculture and improve land-use efficiency. A comprehensive overview on developing cost-effective and user-friendly organic solar cells to contribute towards improved environmental stability is provided. We also summarize recent advances in the synthetic methods used to produce nanostructured active absorber layers of OPVs with improved efficiencies to supply the energy required towards ending poverty and protecting the planet.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app112311324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app112311324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, FinlandPublisher:Elsevier BV Shah, M. A.K.Yousaf; Lu, Yuzheng; Mushtaq, Naveed; Rauf, Sajid; Yousaf, Muhammad; Asghar, Muhammad Imran; Lund, Peter D.; Zhu; Bin;Funding Information: This work was supported Southeast University (SEU) project 3203002003A1 and National Natural Science Foundation of China (NSFC) under the grant 51772080 and 11604088 . Jiangsu Provincial Innovation and Entrepreneurship Talent program Project No. JSSCRC2021491 . Industry-University-Research Cooperation Project of Jiangsu Province in China , Grant No. BY2021057 . Dr. Asghar thanks the Hubei Talent 100 program and Academy of Finland ( 13329016 , 13322738 ) for their financial support. Publisher Copyright: © 2022 The Authors Electrolytes with high-proton conduction and low activation energy are attractive for reducing the high operating temperature of solid-oxide fuel cells to less than <600 °C. In this work, we have fabricated semiconducting electrolyte SrFeTiO3-δ (SFT) material exhibiting high ionic conduction and exceptionally high protonic conduction at low operating temperature but with low electronic conduction to evade the short-circuiting issue. The prepared fuel cell device exhibited high open-circuit voltage (OCV) and a high-power output of 534 mW/cm2, of which 474 mW/cm2 could be for sure be related to the protonic part. The current study suggests that usage of semiconductor SrFeTiO3-δ facilitates a high concentration of oxygen vacancies on the surface of SFT, which mainly benefits proton conduction. Moreover, lower grain boundary resistance leads to obtain higher performance. Also, the Schottky junction phenomena are proposed to inhibit the e-conduction and excel the ions transportation. The high performance and ionic conductivity suggest that SFT could be a promising electrolyte for protonic ceramic fuel cells. Peer reviewed
Renewable Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Mehran Minbashi; Arash Ghobadi; Nafiseh Memarian; H. Rezagholipour Dizaji; M.H. Ehsani;Abstract In this paper, we designed, simulated and analyzed high efficiency of SnS-based solar cells. This work is related to the influence of a glancing angle deposition (GLAD) technique for deposition of SnS layer, on the photovoltaic performance of SnS-based solar cells. The photovoltaic parameters have been calculated for the samples prepared at different oblique incident flux angles (α = 0°, 45°, 55°, 65°, 75°, and 85°). The best efficiency was found for the sample prepared at α = 85°. We simulated the J-V characteristics and showed how the absorber layer that prepared by GLAD technique at different incident flux angles, influence the short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) of solar cell.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.10.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.10.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV Authors: Scott Morrison; Arun Madan;Abstract The cost of amorphous silicon solar panels are dictated by the deposition rate, the utilization rate of the silane gas and stability issues. In this context, we present data of amorphous silicon materials and solar cells using pulsed plasma PECVD (plasma enhanced chemical vapor deposition) technique with the i-layer fabricated with high deposition rates. “Hot-Wire” CVD deposition technique has attracted a considerable amount of interest because of the ability to produce amorphous silicon at high deposition rates and with low hydrogen concentration of H which could minimize the stability phenomena. Further, under suitable conditions, low-temperature polycrystalline silicon can be produced. We present data of high deposition rates of polycrystalline Si (∼10 A/s) and discuss its potential usefulness in a hybrid tandem (combination of amorphous and polycrystalline) junctions.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0927-0248(98)00053-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0927-0248(98)00053-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: André Stapf; Edwin Kroke; Christoph Gondek; Florian Honeit;Abstract Solutions containing hydrofluoric acid (HF), hydrochloric acid (HCl), and hydrogen peroxide (H2O2) were investigated as novel acidic, NOx-free etching mixtures for texturing of monocrystalline silicon wafers. High etch rates of up to 13.3 nm s−1 were observed at room temperature, which are comparable to the etch rates of KOH-IPA solutions. The silicon surface was investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), indicating pyramidal textures for diamond wire and SiC-slurry sawn as well as saw-damage etched (polished) wafers. Non-stirred baths generate random pyramidal structures while constantly stirred solutions generate novel random inverted pyramidal surface structures. The light trapping efficiency of wafers etched by the HF-HCl-H2O2 solutions was compared by UV/vis-reflectivity measurements to KOH/i-propanol specimens indicating lower reflectivities for the HF-HCl-H2O2-treated samples. Using the ‘wafer ray tracer’ (pvlighthouse.com) the light absorption properties of monomodal and random inverted pyramid structures were simulated and compared to well-known random and monomodal textures for PERC solar cells, clearly indicating the best performance for random inverted pyramids. Besides, simulation of a PERC solar cell on a roof top at our university was performed, indicating improved performance, especially for random inverted pyramid textures.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Publisher:Wiley Funded by:UKRI | Beyond biorecovery: envir...UKRI| Beyond biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)Jacob B. Omajai; I.P. Mikheenko; Joseph Wood; Alan J. Stephen; Lynne E. Macaskie;SummaryMicrobially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low‐grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio‐catalytic upgrading of oils and manufacturing ‘drop‐in fuel’ precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 JapanPublisher:Royal Society of Chemistry (RSC) Yuuki Sugawara; Takuya Hihara; Gopinathan M. Anilkumar; Keigo Kamata; Takeo Yamaguchi;doi: 10.1039/d0se01295e
Corrosion-resistive conductive titanium oxide exhibited remarkably higher durability than a carbon support during electrochemical catalytic reactions under high potential conditions.
Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01295e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01295e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 LatviaPublisher:Royal Society of Chemistry (RSC) Funded by:EC | CAMART2EC| CAMART2Martins Vanags; Guntis Kulikovskis; Juris Kostjukovs; Laimonis Jekabsons; Anatolijs Sarakovskis; Krisjanis Smits; Liga Bikse; Andris Šutka;doi: 10.1039/d1ee03982b
In the amphoteric membrane-less decoupled water electrolysis, hydrogen and oxygen are co-produced in separate cells with higher energy efficiency. Ion exchange is mediated by the auxiliary electrodes – HxWO3 for acid and NiOOH for alkaline cell.
Energy & Environment... arrow_drop_down E-resource repository of the University of LatviaArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)E-resource repository of the University of LatviaArticle . 2022Data sources: E-resource repository of the University of LatviaEnergy & Environmental ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03982b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down E-resource repository of the University of LatviaArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)E-resource repository of the University of LatviaArticle . 2022Data sources: E-resource repository of the University of LatviaEnergy & Environmental ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1ee03982b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu