- home
- Advanced Search
- Energy Research
- other engineering and technologies
- Energy Research
- other engineering and technologies
description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2014Publisher:SAE International Authors:Antonio Paolo Carlucci;
Antonio Paolo Carlucci
Antonio Paolo Carlucci in OpenAIREDomenico Laforgia;
Domenico Laforgia
Domenico Laforgia in OpenAIRELuciano Strafella;
Luciano Strafella
Luciano Strafella in OpenAIRETeresa Donateo;
Teresa Donateo
Teresa Donateo in OpenAIREdoi: 10.4271/2014-01-1314
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-1314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-1314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Abstract In conceptual studies and prototypes of aerial vehicles for Urban Air Mobility, batteries are generally adopted as only energy sources. However, batteries have a long charging time that is not suitable for consecutive flights, and a low energy density that limits the range and flight time of the aircraft. For this reason, the hybrid propulsion solution consisting of a battery and a fuel cell has attracted attention in aviation in recent years. This study proposes the conceptual design of a VTOL (Vertical Take-Off and Landing) aircraft for passenger transportation in metropolitan areas by the synergic optimization of the aircraft configuration and the sizing of the propulsion system aimed at minimizing the power request in cruise. In the proposed conceptual design method, VTOL type aircraft is powered by either the battery or the fuel cell according to the flight phase. A multivariate nonlinear optimization problem using as goal the minimization of the fuel cell size is solved. The optimal values of battery size, wing loading, aspect ratio, endurance speed, aircraft weight, maximum lift coefficient, disk loading, rotor solidity, and zero-lift drag coefficient are determined from the solution of the optimization problem.
Journal of Physics C... arrow_drop_down Journal of Physics Conference SeriesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2385/1/012072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Physics C... arrow_drop_down Journal of Physics Conference SeriesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2385/1/012072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG doi: 10.3390/en16227676
In recent years, there has been a growing interest in utilizing hydrogen as an energy carrier across various transportation sectors, including aerospace applications. This interest stems from its unique capability to yield energy without generating direct carbon dioxide emissions. The conversion process is particularly efficient when performed in a fuel cell system. In aerospace applications, two crucial factors come into play: power-to-weight ratio and the simplicity of the powerplant. In fact, the transient behavior and control of the fuel cell are complicated by the continuously changing values of load and altitude during the flight. To meet these criteria, air-cooled open-cathode Proton Exchange Membrane (PEM) fuel cells should be the preferred choice. However, they have limitations regarding the amount of thermal power they can dissipate. Moreover, the performances of fuel cell systems are significantly worsened at high altitude operating conditions because of the lower air density. Consequently, they find suitability primarily in applications such as Unmanned Aerial Vehicles (UAVs) and Urban Air Mobility (UAM). In the case of ultralight and light aviation, liquid-cooled solutions with a separate circuit for compressed air supply are adopted. The goal of this investigation is to identify the correct simulation approach to predict the behavior of such systems under dynamic conditions, typical of their application in aerial vehicles. To this aim, a detailed review of the scientific literature has been performed, with specific reference to semi-empirical and control-oriented models of the whole fuel cell systems including not only the stack but also the complete balance of plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:EDP Sciences Authors:Teresa Donateo;
Teresa Donateo
Teresa Donateo in OpenAIRELuciano Strafella;
Ludovico Cucciniello; Antonio Ficarella;Luciano Strafella
Luciano Strafella in OpenAIREThe electrification of aircraft is a well-established trend in recent years in order to achieve economic and environmental sustainability. In this framework, an application particularly interesting for hybrid electric power system is represented by urban air-mobility. For this application, the authors presented a parallel hybrid electric power system including a turboshaft engine and two electric motors and proposed a quasi-stationary simulation tool. As a further step, this paper deals with the dynamic modelling of the same turboshaft engine within the framework of a hybrid electric system where the pilot command is interpreted as a power request to be satisfied by the engine and the electric machine according to the selected energy management strategy. In this work, the dynamic behaviour of the turboshaft engine is analysed with and without the help of the electric motors to satisfy the power demand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019705003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019705003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Abstract The EU6d Emission Regulation requires Real Driving Emissions as an additional type approval requirement within the 2017 - 2020 timeframe in order to take into account the influence of the road profile, the ambient conditions and the traffic situation as well as the behavior of the driver. The new test uses Portable Emissions Monitoring System (PEMS) to measure on-board emissions. The trip sequence shall consist of a urban, a rural and a motorway sections with specific requirements in terms of distance and average speed for each section. For example, the overall trip duration shall be between 90 and 120 minutes. Due to these strong requirements, the execution of RDE measurements has to be preceded by an accurate planning of the route to reduce test failure risk and, consequently, experimental costs. The aim of the present investigation is to present a procedure to build a cycle for real driving emissions that minimizes the distance, is robust with respect to the uncertainties of traffic conditions and satisfy the requirements of the regulations. The procedure has been applied to routes from and to the Department of Engineering for Innovation. Moreover, a preliminary analysis of the effect of instantaneous speed and acceleration on real drive emissions is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.307&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2014Publisher:SAE International Authors:Teresa Donateo;
Elena Rizzo; Elisabetta Argentieri;Teresa Donateo
Teresa Donateo in OpenAIREMaria Grazia De Giorgi;
+1 AuthorsMaria Grazia De Giorgi
Maria Grazia De Giorgi in OpenAIRETeresa Donateo;
Elena Rizzo; Elisabetta Argentieri;Teresa Donateo
Teresa Donateo in OpenAIREMaria Grazia De Giorgi;
Maria Grazia De Giorgi
Maria Grazia De Giorgi in OpenAIREAntonio Ficarella;
Antonio Ficarella
Antonio Ficarella in OpenAIREdoi: 10.4271/2014-01-2187
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-2187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-2187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2007Publisher:SAE International Authors:Teresa Donateo;
Teresa Donateo
Teresa Donateo in OpenAIREDomenico Laforgia;
S. Zurlo;Domenico Laforgia
Domenico Laforgia in OpenAIREA. de Risi;
A. de Risi
A. de Risi in OpenAIREdoi: 10.4271/2007-24-0037
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2007-24-0037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2007-24-0037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2001Publisher:SAE International Authors:Domenico Laforgia;
Domenico Laforgia
Domenico Laforgia in OpenAIRETeresa Donateo;
Teresa Donateo
Teresa Donateo in OpenAIREArturo de Risi;
Arturo de Risi
Arturo de Risi in OpenAIREdoi: 10.4271/2001-01-1980
The aim of the present investigation is the implementation of an innovative procedure to optimise the design of a high pressure common rail electroinjector. The optimization method is based on the use of genetic programming, a search procedure developed by John Holland at the University of Michigan. A genetic algorithm (GA) creates a random population which evolves combining the genetic code of the most capable individual of the previous generation. For the present investigation an algorithm which includes the operators of crossover, mutation and elitist reproduction has been developed. This genetic algorithm allows the optimization of both single and multicriteria problems. For the determination of the multi-objective fitness function, the concept of Pareto optimality has been implemented. The performance of the multiobjective genetic algorithm was examined by using appropriate mathematical functions and was compared with the single objective one. The proposed genetic algorithm was used to define the geometrical and dynamic characteristics of high pressure injectors that optimize the injection profile and the time response of the system. As evaluation function for the GA a 1D simulation code of injection systems, already developed and extensively tested by the authors, has been used. The 1D model is based on the concentrated volume method and includes the effect of friction on the dynamics of the movable parts. The conservation equations were integrated by using the characteristic method. The electromagnetic force on the anchor of the injector has been simulated with an empirical function obtained by fitting experimental data. For the optimization the geometrical and dynamical data of a commercial five holes VCO injector were used as baseline case and the best combination of different groups of parameter has been found. The optimized combinations of the investigated parameters were compared with the original values of the commercial injector. Finally a feasibility analysis of the optimized parameters was performed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2001-01-1980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2001-01-1980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Abstract The paper proposes a simulation approach to evaluate the power required by a rotorcraft in standard flight missions and in emergency landing maneuvers, and the corresponding fuel consumption, in order to compare the feasibility and potential fuel savings for different hybrid power systems. More in detail, three options are analyzed, namely electrification of the tail rotor, fully hybrid electric propulsion and electric emergency landing. Weight penalty and potential fuel saving for the proposed hybridization schemes are evaluated for an Agusta-Westland A109 twin engine helicopter model. Nonetheless the discussed methods of analysis have general validity for single main rotor helicopter configurations. Two different scenarios are considered in this investigation: current technologies for batteries and motors and improved electrical components, with performance projections as of 2040. According to this analysis, electrification of the tail rotor and parallel hybridization are feasible with available technology, whereas a fully electrical power system for emergency landing could be developed only in the future. Finally, a parallel hybrid electric power system is sized according to the analysis of power request over four different missions. Fuel savings are evaluated for different energy management strategies. According to the results of this investigation, the parallel hybrid electric power system with present-day and future technologies can save fuel up to 5% and 12%, respectively, with an appropriate energy management strategy.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Davide Pio Placentino;Teresa Donateo;
Luigi Spedicato;Teresa Donateo
Teresa Donateo in OpenAIREAbstract The aim of the proposed investigation is to design and analyze the performance of a hybrid electric power system for multicopter and to evaluate its performance. To this, the overall power request was assumed to be satisfied in three possible ways: a battery (electric power system), a generator powered by a two-stroke internal combustion engine (thermal power system), and both battery and engine (hybrid power system). The fuel stored on board was calculated for each configuration by keeping constant the overall mass. In the hybrid case, the engine also allows the battery to be recharged during the flight with an on/off behavior of the engine. Electric mode is started when the batteries are sufficiently charged and can produce the required propulsive power. This mode goes on as long as the state of charge (SOC) is above a minimum value. When the SOC is lower than this value, the batteries let the engine be restarted by the generator. Then, the engine generates both the power for propulsion and to recharge the battery. After a sensitivity analysis, an optimization has been performed by considering different thresholds for the battery state of charge to shift from electric to recharge mode and by taking into account different values of the recharge current. The methodology was applied to two different multicopters and the proposed powertrains were simulated with a backward approach starting from experimental time histories of required electric power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu