- home
- Advanced Search
- Energy Research
- other engineering and technologies
- Energy Research
- other engineering and technologies
description Publicationkeyboard_double_arrow_right Article , Other literature type , Contribution for newspaper or weekly magazine 2020 DenmarkPublisher:IOP Publishing Authors: Gaunaa, Mac; Meyer Forsting, Alexander; Trevisi, Filippo;AbstractThe present paper introduces a new, physically consistent definition of effective induction that should be used in engineering models for power kite performance that use aerodynamic coefficients for the wing. It is argued that in such cases it is physically inconsistent to use disc-based induction models – like momentum models – and thus a new, physically consistent induction model using vortex theory methodology is derived. Simulation results using the new induction model are compared to the previously often used momentum method and Actuator Line (AL) CFD simulations. The comparison shows that the new vortex based model is in much better agreement with the AL results than the momentum method. The new model is as computationally light as the momentum induction method.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyContribution for newspaper or weekly magazine . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1618/3/032010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyContribution for newspaper or weekly magazine . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1618/3/032010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Authors: M P Van Der Laan; M Baungaard; A Meyer Forsting; P-E Réthoré;Abstract Energy losses due to wind farm clustering and wind farm interaction are rarely well represented in the wind farm design process because of the lack of fast models that can accurately account for neighboring wind farm wakes. A recently developed solution is the actuator wind farm (AWF) model, which is a Reynolds-averaged Navier-stokes (RANS) based wind farm parametrization that models a wind farm as a distributed thrust force and applies a global wind farm thrust coefficient controller. We propose an improved version of the AWF model, where each turbine employs a local thrust force controller and uses turbine thrust and power coefficients as input to better handle inhomogeneous inflow conditions. The proposed AWF model shows improved performance compared to the original AWF model in terms of predicted wind turbine power of a downstream wind farm that operates in a partial wake of an upstream wind farm, without significantly increasing the computational effort. However, the annual energy production (AEP) wake losses of a large wind farm cluster are nearly unaffected by using local or global control and input because the largest impact is found near the cut-in wind speed, which does not contribute much to the AEP wake losses.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2767/9/092010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2767/9/092010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing J. Criado Risco; M. P. van der Laan; M. M. Pedersen; A. Meyer Forsting; P.-E. Réthoré;Abstract A new wake surrogate model based on Reynolds-averaged Navier-Stokes (RANS) single rotor simulations is presented. The model relies on a series of three-dimensional pre-calculated deficit and added turbulence intensity flow fields, stored in a look-up table (LUT) as a function of the thrust coefficient and the ambient turbulence intensity. For any combination of these parameters, the flow around a wind turbine can be predicted by linearly interpolating within the look-up table. Furthermore, the resulting three-dimensional flow fields from different turbine sources can be superposed linearly to calculate the total wind farm flow. The model is implemented in PyWake and benchmarked against other, commonly employed engineering wake models, namely the Gaussian-Bastankhah, the N. O. Jensen and the Zong models, where RANS wind farm simulations are used as reference. In both full and partial wake cases, the surrogate model achieves a higher accuracy than any other model. Besides providing an accuracy comparable to a full RANS solution, the model can compute a flow case in the order of 1 s on a single processor. The main disadvantage is that the generation of the look-up table is time consuming, computationally expensive and can be memory demanding (especially if more inputs, such as the yaw misalignment angle, stability, etc. are added). Nevertheless, generating the LUT only has to be done once per wind turbine type.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2505/1/012016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2505/1/012016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors: Georg Raimund Pirrung; Maarten Paul van der Laan; Néstor Ramos‐García; Alexander Raul Meyer Forsting;doi: 10.1002/we.2481
AbstractThe loading of a wind turbine decreases towards the blade tip because of the velocities induced by the tip vortex. This tip loss effect has to be taken into account when performing actuator disc simulations, where the single blades of the turbine are not modeled. A widely used method applies a factor on the axial and tangential loading of the turbine. This factor decreases when approaching the blade tip. It has been shown that the factor should be different for the axial and tangential loading of the turbine to model the rotation of the resulting force vector at the airfoil sections caused by the induced velocity. The present article contains the derivation of a simple correction for the tangential load factor that takes this rotation into account. The correction does not need any additional curve fitting but just depends on the local airfoil characteristics and angle of attack. Actuator disc computations with the modified tip loss correction show improved agreement with results from actuator line, free wake lifting line, and blade element momentum simulations.
Wind Energy arrow_drop_down Wind EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, Denmark, Netherlands, ItalyPublisher:Copernicus GmbH Koen Boorsma; Gerard Schepers; Helge Aagard Madsen; Georg Pirrung; Niels Sørensen; Galih Bangga; Manfred Imiela; Christian Grinderslev; Alexander Meyer Forsting; Wen Zhong Shen; Alessandro Croce; Stefano Cacciola; Alois Peter Schaffarczyk; Brandon Lobo; Frederic Blondel; Philippe Gilbert; Ronan Boisard; Leo Höning; Luca Greco; Claudio Testa; Emmanuel Branlard; Jason Jonkman; Ganesh Vijayakumar;handle: 20.500.14243/466785 , 11311/1231176
Abstract. Within the framework of the fourth phase of the International Energy Agency (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out featuring three simulation cases in axial, sheared and yawed inflow conditions. Results were obtained from more than 19 simulation tools originating from 12 institutes, ranging in fidelity from blade element momentum (BEM) to computational fluid dynamics (CFDs) and compared to state-of-the-art field measurements from the 2 MW DanAero turbine. More than 15 different variable types ranging from lifting-line variables to blade surface pressures, loads and velocities have been compared for the different conditions, resulting in over 250 comparison plots. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling. For axial flow conditions, a good agreement was found between the various code types, where a dedicated grid sensitivity study was necessary for the CFD simulations. However, compared to wind tunnel experiments on rotors featuring controlled conditions, it remains a challenge to achieve good agreement of absolute levels between simulations and measurements in the field. For sheared inflow conditions, uncertainties due to rotational and unsteady effects on airfoil data result in the CFD predictions standing out above the codes that need input of sectional airfoil data. However, it was demonstrated that using CFD-synthesized airfoil data is an effective means to bypass this shortcoming. For yawed flow conditions, it was observed that modeling of the skewed wake effect is still problematic for BEM codes where CFD and free vortex wake codes inherently model the underlying physics correctly. The next step is a comparison in turbulent inflow conditions, which is featured in IEA Wind Task 47. Doing this analysis in cooperation under the auspices of the IEA Wind Technology Collaboration Program (TCP) has led to many mutual benefits for the participants. The large size of the consortium brought ample manpower for the analysis where the learning process by combining several complementary experiences and modeling techniques gave valuable insights that could not be found when the analysis is carried out individually.
IRIS Cnr arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-211-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-211-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Contribution for newspaper or weekly magazine 2019 DenmarkPublisher:IOP Publishing Authors: Meyer Forsting, Alexander R.; Pirrung, Georg R.; Ramos García, Néstor;AbstractThe force smearing in the actuator line technique ensures its numerical stability, but also breaks its intended similarity to the lifting line by similarly smearing its vorticity in the flow domain. The wake thus induces lower velocities at the blade, linking the blade forces to the force smearing. A recently developed tuning-free, vortex-based correction recovers this missing induction, regaining the lifting-line behaviour of the actuator line. The interplay of this new smearing correction with grid and blade resolution is studied in uniform and turbulent inflow with respect to the blade forces and wake behaviour. With only 10 grid cells along the blade, the thrust is within 2.8% and the power within 5.7% of the high-resolution reference. With 20 grid cells the difference drops to 1.5% and 2.5%, respectively. The influence of the force smearing on the wake velocities dominates over the choice of correction, yet under turbulent inflow the wake characteristics become nearly independent of force smearing 6 rotor radii downstream of the turbine.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyContribution for newspaper or weekly magazine . 2019Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1256/1/012020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyContribution for newspaper or weekly magazine . 2019Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1256/1/012020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Contribution for newspaper or weekly magazine 2020 DenmarkPublisher:IOP Publishing Authors: Gaunaa, Mac; Meyer Forsting, Alexander; Trevisi, Filippo;AbstractThe present paper introduces a new, physically consistent definition of effective induction that should be used in engineering models for power kite performance that use aerodynamic coefficients for the wing. It is argued that in such cases it is physically inconsistent to use disc-based induction models – like momentum models – and thus a new, physically consistent induction model using vortex theory methodology is derived. Simulation results using the new induction model are compared to the previously often used momentum method and Actuator Line (AL) CFD simulations. The comparison shows that the new vortex based model is in much better agreement with the AL results than the momentum method. The new model is as computationally light as the momentum induction method.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyContribution for newspaper or weekly magazine . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1618/3/032010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyContribution for newspaper or weekly magazine . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1618/3/032010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Authors: M P Van Der Laan; M Baungaard; A Meyer Forsting; P-E Réthoré;Abstract Energy losses due to wind farm clustering and wind farm interaction are rarely well represented in the wind farm design process because of the lack of fast models that can accurately account for neighboring wind farm wakes. A recently developed solution is the actuator wind farm (AWF) model, which is a Reynolds-averaged Navier-stokes (RANS) based wind farm parametrization that models a wind farm as a distributed thrust force and applies a global wind farm thrust coefficient controller. We propose an improved version of the AWF model, where each turbine employs a local thrust force controller and uses turbine thrust and power coefficients as input to better handle inhomogeneous inflow conditions. The proposed AWF model shows improved performance compared to the original AWF model in terms of predicted wind turbine power of a downstream wind farm that operates in a partial wake of an upstream wind farm, without significantly increasing the computational effort. However, the annual energy production (AEP) wake losses of a large wind farm cluster are nearly unaffected by using local or global control and input because the largest impact is found near the cut-in wind speed, which does not contribute much to the AEP wake losses.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2767/9/092010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2767/9/092010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing J. Criado Risco; M. P. van der Laan; M. M. Pedersen; A. Meyer Forsting; P.-E. Réthoré;Abstract A new wake surrogate model based on Reynolds-averaged Navier-Stokes (RANS) single rotor simulations is presented. The model relies on a series of three-dimensional pre-calculated deficit and added turbulence intensity flow fields, stored in a look-up table (LUT) as a function of the thrust coefficient and the ambient turbulence intensity. For any combination of these parameters, the flow around a wind turbine can be predicted by linearly interpolating within the look-up table. Furthermore, the resulting three-dimensional flow fields from different turbine sources can be superposed linearly to calculate the total wind farm flow. The model is implemented in PyWake and benchmarked against other, commonly employed engineering wake models, namely the Gaussian-Bastankhah, the N. O. Jensen and the Zong models, where RANS wind farm simulations are used as reference. In both full and partial wake cases, the surrogate model achieves a higher accuracy than any other model. Besides providing an accuracy comparable to a full RANS solution, the model can compute a flow case in the order of 1 s on a single processor. The main disadvantage is that the generation of the look-up table is time consuming, computationally expensive and can be memory demanding (especially if more inputs, such as the yaw misalignment angle, stability, etc. are added). Nevertheless, generating the LUT only has to be done once per wind turbine type.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2505/1/012016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2505/1/012016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors: Georg Raimund Pirrung; Maarten Paul van der Laan; Néstor Ramos‐García; Alexander Raul Meyer Forsting;doi: 10.1002/we.2481
AbstractThe loading of a wind turbine decreases towards the blade tip because of the velocities induced by the tip vortex. This tip loss effect has to be taken into account when performing actuator disc simulations, where the single blades of the turbine are not modeled. A widely used method applies a factor on the axial and tangential loading of the turbine. This factor decreases when approaching the blade tip. It has been shown that the factor should be different for the axial and tangential loading of the turbine to model the rotation of the resulting force vector at the airfoil sections caused by the induced velocity. The present article contains the derivation of a simple correction for the tangential load factor that takes this rotation into account. The correction does not need any additional curve fitting but just depends on the local airfoil characteristics and angle of attack. Actuator disc computations with the modified tip loss correction show improved agreement with results from actuator line, free wake lifting line, and blade element momentum simulations.
Wind Energy arrow_drop_down Wind EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Italy, Denmark, Netherlands, ItalyPublisher:Copernicus GmbH Koen Boorsma; Gerard Schepers; Helge Aagard Madsen; Georg Pirrung; Niels Sørensen; Galih Bangga; Manfred Imiela; Christian Grinderslev; Alexander Meyer Forsting; Wen Zhong Shen; Alessandro Croce; Stefano Cacciola; Alois Peter Schaffarczyk; Brandon Lobo; Frederic Blondel; Philippe Gilbert; Ronan Boisard; Leo Höning; Luca Greco; Claudio Testa; Emmanuel Branlard; Jason Jonkman; Ganesh Vijayakumar;handle: 20.500.14243/466785 , 11311/1231176
Abstract. Within the framework of the fourth phase of the International Energy Agency (IEA) Wind Task 29, a large comparison exercise between measurements and aeroelastic simulations has been carried out featuring three simulation cases in axial, sheared and yawed inflow conditions. Results were obtained from more than 19 simulation tools originating from 12 institutes, ranging in fidelity from blade element momentum (BEM) to computational fluid dynamics (CFDs) and compared to state-of-the-art field measurements from the 2 MW DanAero turbine. More than 15 different variable types ranging from lifting-line variables to blade surface pressures, loads and velocities have been compared for the different conditions, resulting in over 250 comparison plots. The result is a unique insight into the current status and accuracy of rotor aerodynamic modeling. For axial flow conditions, a good agreement was found between the various code types, where a dedicated grid sensitivity study was necessary for the CFD simulations. However, compared to wind tunnel experiments on rotors featuring controlled conditions, it remains a challenge to achieve good agreement of absolute levels between simulations and measurements in the field. For sheared inflow conditions, uncertainties due to rotational and unsteady effects on airfoil data result in the CFD predictions standing out above the codes that need input of sectional airfoil data. However, it was demonstrated that using CFD-synthesized airfoil data is an effective means to bypass this shortcoming. For yawed flow conditions, it was observed that modeling of the skewed wake effect is still problematic for BEM codes where CFD and free vortex wake codes inherently model the underlying physics correctly. The next step is a comparison in turbulent inflow conditions, which is featured in IEA Wind Task 47. Doing this analysis in cooperation under the auspices of the IEA Wind Technology Collaboration Program (TCP) has led to many mutual benefits for the participants. The large size of the consortium brought ample manpower for the analysis where the learning process by combining several complementary experiences and modeling techniques gave valuable insights that could not be found when the analysis is carried out individually.
IRIS Cnr arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-211-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-211-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Contribution for newspaper or weekly magazine 2019 DenmarkPublisher:IOP Publishing Authors: Meyer Forsting, Alexander R.; Pirrung, Georg R.; Ramos García, Néstor;AbstractThe force smearing in the actuator line technique ensures its numerical stability, but also breaks its intended similarity to the lifting line by similarly smearing its vorticity in the flow domain. The wake thus induces lower velocities at the blade, linking the blade forces to the force smearing. A recently developed tuning-free, vortex-based correction recovers this missing induction, regaining the lifting-line behaviour of the actuator line. The interplay of this new smearing correction with grid and blade resolution is studied in uniform and turbulent inflow with respect to the blade forces and wake behaviour. With only 10 grid cells along the blade, the thrust is within 2.8% and the power within 5.7% of the high-resolution reference. With 20 grid cells the difference drops to 1.5% and 2.5%, respectively. The influence of the force smearing on the wake velocities dominates over the choice of correction, yet under turbulent inflow the wake characteristics become nearly independent of force smearing 6 rotor radii downstream of the turbine.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyContribution for newspaper or weekly magazine . 2019Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1256/1/012020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyContribution for newspaper or weekly magazine . 2019Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1256/1/012020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu