- home
- Advanced Search
- Energy Research
- other engineering and technologies
- Energy Research
- other engineering and technologies
description Publicationkeyboard_double_arrow_right Article 2024 ArgentinaPublisher:MDPI AG Authors: Lautaro R. Santillán; Claudio J. Zega; Edgardo F. Irassar;doi: 10.3390/su16031310
handle: 11336/231776
The building sector’s sustainability requires construction and demolition waste (CDW) to contribute to the circular economy. Among the CDW, recycled concrete aggregates (RA) have been mainly studied to replace natural aggregates. Still, the approval of their use in regulations and standards is slower. Some barriers to the adoption of RA are related to the durability of recycled aggregate concrete (RAC). However, their physical and mechanical properties have been extensively studied. The durability risks associated with sulfate attacks have been solved for conventional concrete. However, sulfate attack on recycled concrete still raises numerous unsolved questions. In this literature review, the experience of sulfate attack on RAC is compiled and analyzed using a compressive framework highlighting the most relevant aspects of the new matrix in RAC and the old matrix of RA to support its relevance to the damaging sulfate process. Suggestions for further research are presented to understand the full extent of this issue and contribute to incorporating and extending recycled aggregates into existing regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ArgentinaPublisher:MDPI AG Authors: Lautaro R. Santillán; Claudio J. Zega; Edgardo F. Irassar;doi: 10.3390/su16031310
handle: 11336/231776
The building sector’s sustainability requires construction and demolition waste (CDW) to contribute to the circular economy. Among the CDW, recycled concrete aggregates (RA) have been mainly studied to replace natural aggregates. Still, the approval of their use in regulations and standards is slower. Some barriers to the adoption of RA are related to the durability of recycled aggregate concrete (RAC). However, their physical and mechanical properties have been extensively studied. The durability risks associated with sulfate attacks have been solved for conventional concrete. However, sulfate attack on recycled concrete still raises numerous unsolved questions. In this literature review, the experience of sulfate attack on RAC is compiled and analyzed using a compressive framework highlighting the most relevant aspects of the new matrix in RAC and the old matrix of RA to support its relevance to the damaging sulfate process. Suggestions for further research are presented to understand the full extent of this issue and contribute to incorporating and extending recycled aggregates into existing regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 ArgentinaPublisher:MDPI AG Authors: Lautaro R. Santillán; Claudio J. Zega; Edgardo F. Irassar;doi: 10.3390/su16031310
handle: 11336/231776
The building sector’s sustainability requires construction and demolition waste (CDW) to contribute to the circular economy. Among the CDW, recycled concrete aggregates (RA) have been mainly studied to replace natural aggregates. Still, the approval of their use in regulations and standards is slower. Some barriers to the adoption of RA are related to the durability of recycled aggregate concrete (RAC). However, their physical and mechanical properties have been extensively studied. The durability risks associated with sulfate attacks have been solved for conventional concrete. However, sulfate attack on recycled concrete still raises numerous unsolved questions. In this literature review, the experience of sulfate attack on RAC is compiled and analyzed using a compressive framework highlighting the most relevant aspects of the new matrix in RAC and the old matrix of RA to support its relevance to the damaging sulfate process. Suggestions for further research are presented to understand the full extent of this issue and contribute to incorporating and extending recycled aggregates into existing regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ArgentinaPublisher:MDPI AG Authors: Lautaro R. Santillán; Claudio J. Zega; Edgardo F. Irassar;doi: 10.3390/su16031310
handle: 11336/231776
The building sector’s sustainability requires construction and demolition waste (CDW) to contribute to the circular economy. Among the CDW, recycled concrete aggregates (RA) have been mainly studied to replace natural aggregates. Still, the approval of their use in regulations and standards is slower. Some barriers to the adoption of RA are related to the durability of recycled aggregate concrete (RAC). However, their physical and mechanical properties have been extensively studied. The durability risks associated with sulfate attacks have been solved for conventional concrete. However, sulfate attack on recycled concrete still raises numerous unsolved questions. In this literature review, the experience of sulfate attack on RAC is compiled and analyzed using a compressive framework highlighting the most relevant aspects of the new matrix in RAC and the old matrix of RA to support its relevance to the damaging sulfate process. Suggestions for further research are presented to understand the full extent of this issue and contribute to incorporating and extending recycled aggregates into existing regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu