- home
- Advanced Search
- Energy Research
- Embargo
- other engineering and technologies
- Energy Research
- Embargo
- other engineering and technologies
description Publicationkeyboard_double_arrow_right Conference object 2023 SerbiaPublisher:IEEE Authors: Singh, Suraj Kumar; Yadav, Sachin; Batas Bjelić, Ilija; Singh, Rhythm;The focus of this study is to analyse and compare the predictive capabilities of univariate and multivariate methods of forecasting the global horizontal irradiance (GHI) for an hour ahead. The forecasting problem is addressed using supervised machine learning methods. In order to simplify the model, a feature selection algorithm is used to identify the highly correlated features. The forecasting is performed by utilizing popular machine learning algorithms viz., random forest (RF), K-nearest neighbors regression (KNN), support vector machine (SVM) and artificial neural networks (ANN). The paper evaluates and contrasts the effectiveness of these models for this application. Additionally, the study examines how the forecasting models' performance varies throughout the year and across seasons.
DAIS - Digitalni arh... arrow_drop_down DAIS - Digitalni arhiv izdanja SANUConference objectData sources: DAIS - Digitalni arhiv izdanja SANUDAIS - Digitalni arhiv izdanja SANUConference object . 2023Data sources: DAIS - Digitalni arhiv izdanja SANUhttps://doi.org/10.1109/icest5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icest58410.2023.10187242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 25 Powered bymore_vert DAIS - Digitalni arh... arrow_drop_down DAIS - Digitalni arhiv izdanja SANUConference objectData sources: DAIS - Digitalni arhiv izdanja SANUDAIS - Digitalni arhiv izdanja SANUConference object . 2023Data sources: DAIS - Digitalni arhiv izdanja SANUhttps://doi.org/10.1109/icest5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icest58410.2023.10187242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 SerbiaPublisher:IEEE Authors: Singh, Suraj Kumar; Yadav, Sachin; Batas Bjelić, Ilija; Singh, Rhythm;The focus of this study is to analyse and compare the predictive capabilities of univariate and multivariate methods of forecasting the global horizontal irradiance (GHI) for an hour ahead. The forecasting problem is addressed using supervised machine learning methods. In order to simplify the model, a feature selection algorithm is used to identify the highly correlated features. The forecasting is performed by utilizing popular machine learning algorithms viz., random forest (RF), K-nearest neighbors regression (KNN), support vector machine (SVM) and artificial neural networks (ANN). The paper evaluates and contrasts the effectiveness of these models for this application. Additionally, the study examines how the forecasting models' performance varies throughout the year and across seasons.
DAIS - Digitalni arh... arrow_drop_down DAIS - Digitalni arhiv izdanja SANUConference objectData sources: DAIS - Digitalni arhiv izdanja SANUDAIS - Digitalni arhiv izdanja SANUConference object . 2023Data sources: DAIS - Digitalni arhiv izdanja SANUhttps://doi.org/10.1109/icest5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icest58410.2023.10187242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 25 Powered bymore_vert DAIS - Digitalni arh... arrow_drop_down DAIS - Digitalni arhiv izdanja SANUConference objectData sources: DAIS - Digitalni arhiv izdanja SANUDAIS - Digitalni arhiv izdanja SANUConference object . 2023Data sources: DAIS - Digitalni arhiv izdanja SANUhttps://doi.org/10.1109/icest5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icest58410.2023.10187242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Erten, Duygu; Kılkış, Birol;handle: 20.500.12511/8719
According to the second law of thermodynamics, all human activities cause exergy destructions, adding to additional root causes for carbon dioxide emissions responsibility. It means that current carbon dioxide concentrations are accurately observed, but the root causes and their potential solutions against global warming fall short of achieving the goals of the Paris agreement by almost 45% in terms of decarbonization efforts, as shown in this paper. This result applies to all activities, including the green facility concept. In this respect, the primary aim of this paper is to raise awareness about the essence of the Second Law of Thermodynamics in expanding the green facility concept to reach more effective and sustainable rating methodologies concerning the climate crisis. A new evaluating and rating model with a set of exergy-based green building metrics that relate additional carbon dioxide emissions to irreversible exergy destructions has been developed. Examples about apparently green buildings according to the First Law of Thermodynamics are given by showing that these buildings are not green due to additional carbon dioxide emissions responsibility due to exergy destructions. An airport terminal building case is elaborated. It has been shown that although part of the electricity comes from a third-party wind energy provider, it ends up with carbon dioxide emissions responsibility because it is not entirely used in exergy-rational demand points and compares less favorably with an on-site cogeneration system using natural gas by about 30% more emissions responsibility. The results and derivations of new metrics are discussed, which shed light on adding new criteria to existing green building certification programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Erten, Duygu; Kılkış, Birol;handle: 20.500.12511/8719
According to the second law of thermodynamics, all human activities cause exergy destructions, adding to additional root causes for carbon dioxide emissions responsibility. It means that current carbon dioxide concentrations are accurately observed, but the root causes and their potential solutions against global warming fall short of achieving the goals of the Paris agreement by almost 45% in terms of decarbonization efforts, as shown in this paper. This result applies to all activities, including the green facility concept. In this respect, the primary aim of this paper is to raise awareness about the essence of the Second Law of Thermodynamics in expanding the green facility concept to reach more effective and sustainable rating methodologies concerning the climate crisis. A new evaluating and rating model with a set of exergy-based green building metrics that relate additional carbon dioxide emissions to irreversible exergy destructions has been developed. Examples about apparently green buildings according to the First Law of Thermodynamics are given by showing that these buildings are not green due to additional carbon dioxide emissions responsibility due to exergy destructions. An airport terminal building case is elaborated. It has been shown that although part of the electricity comes from a third-party wind energy provider, it ends up with carbon dioxide emissions responsibility because it is not entirely used in exergy-rational demand points and compares less favorably with an on-site cogeneration system using natural gas by about 30% more emissions responsibility. The results and derivations of new metrics are discussed, which shed light on adding new criteria to existing green building certification programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; +1 AuthorsBatidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; Faaij, André P C;doi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; +1 AuthorsBatidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; Faaij, André P C;doi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Informa UK Limited Authors: Setareh Katircioglu; Salih Katircioglu;handle: 11467/6089
This article searches the effects of tourism development onemission pollutants in Malta using (1) the autoregressivedistributed lag approach and (2) two datasets which are annualdata from 1971 to 2018 and quarterly data from 1990Q1 tı2018Q4 as per data availability. Findings confirm that tourism,energy usage, and carbon dioxide emissions are in a long-termequilibrium relationship; carbon emissions converge rapidlytowards the long-term equilibrium path through tourism andenergy consumption channels. Findings also reveal that growthin tourism results in significant changes in energy consumptionand, therefore, in CO2emissions. Tourism has positive effects oncarbon emissions in shorter periods. Still, these effects turn out tobe harmful in the more extended periods beyond the peak pointof carbon emissions which correspond to 1,063,213 milliontourists. Therefore, this study strongly confirms the existence ofan inverted U-shaped Environmental Kuznets Curve hypothesisfor Malta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Informa UK Limited Authors: Setareh Katircioglu; Salih Katircioglu;handle: 11467/6089
This article searches the effects of tourism development onemission pollutants in Malta using (1) the autoregressivedistributed lag approach and (2) two datasets which are annualdata from 1971 to 2018 and quarterly data from 1990Q1 tı2018Q4 as per data availability. Findings confirm that tourism,energy usage, and carbon dioxide emissions are in a long-termequilibrium relationship; carbon emissions converge rapidlytowards the long-term equilibrium path through tourism andenergy consumption channels. Findings also reveal that growthin tourism results in significant changes in energy consumptionand, therefore, in CO2emissions. Tourism has positive effects oncarbon emissions in shorter periods. Still, these effects turn out tobe harmful in the more extended periods beyond the peak pointof carbon emissions which correspond to 1,063,213 milliontourists. Therefore, this study strongly confirms the existence ofan inverted U-shaped Environmental Kuznets Curve hypothesisfor Malta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors: Çetinkaya, Afşin Yusuf; Yetilmezsoy, Kaan;Abstract The present analysis was conducted as the first study to investigate the biochemical methane potential of four different agro-industrial wastewaters originating from chocolate, slaughterhouse, gum, and beet sugar industries under the same anaerobic fermentation conditions. To the best of our knowledge, no previous study has specifically attempted to pinpoint a hybrid programming strategy for making a quantitative description of the anaerobic biodegradability of these waste streams. Thus, considering the scarcity of the literature in this field, a comprehensive study was conducted to evaluate the amount of bio-methane obtainable from the investigated organic wastes and to predict their kinetics using three different sigmoidal microbial growth curve models (modified Gompertz equation, transference function (reaction curve-type model), and logistic function) within the framework an original MATLAB®-based coding scheme. The results showed that methane productions started immediately after 4 h of incubation for all substrates and reached their maximum rates of 118, 116, 108, 34 mL CH4/g VS/day, respectively, for wastewaters from chocolate, slaughterhouse, gum, and beet sugar industries. The corrected mean steady state methane contents were 61.7%, 73.4%, 62.8%, and 62.1% in the respective order. The highest methane yield (943 mL CH4/g VS) was obtained from the slaughterhouse wastewater, and this value was 1.32, 1.58, and 4.56 times higher than those obtained in the anaerobic digestion of chocolate, gum, and beet sugar wastewaters, respectively. Among the three kinetic models tested, the logistic function best explained the behavior of the observed data of all substrates using a Quasi-Newton cubic line search procedure (R2 = 0.987–0.996) with minimum number of non-linear iterations and function counts. Deviations between the measured and the outputs of the best-fit kinetic model were less than 4.3% in prediction of methane production potentials, suggesting that the proposed computational methodology could be used as a well-suited and robust approach for modeling and optimization of a highly non-linear biosystem.
Aksaray University I... arrow_drop_down Aksaray University Institutional RepositoryArticle . 2019Data sources: Aksaray University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aksaray University I... arrow_drop_down Aksaray University Institutional RepositoryArticle . 2019Data sources: Aksaray University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors: Çetinkaya, Afşin Yusuf; Yetilmezsoy, Kaan;Abstract The present analysis was conducted as the first study to investigate the biochemical methane potential of four different agro-industrial wastewaters originating from chocolate, slaughterhouse, gum, and beet sugar industries under the same anaerobic fermentation conditions. To the best of our knowledge, no previous study has specifically attempted to pinpoint a hybrid programming strategy for making a quantitative description of the anaerobic biodegradability of these waste streams. Thus, considering the scarcity of the literature in this field, a comprehensive study was conducted to evaluate the amount of bio-methane obtainable from the investigated organic wastes and to predict their kinetics using three different sigmoidal microbial growth curve models (modified Gompertz equation, transference function (reaction curve-type model), and logistic function) within the framework an original MATLAB®-based coding scheme. The results showed that methane productions started immediately after 4 h of incubation for all substrates and reached their maximum rates of 118, 116, 108, 34 mL CH4/g VS/day, respectively, for wastewaters from chocolate, slaughterhouse, gum, and beet sugar industries. The corrected mean steady state methane contents were 61.7%, 73.4%, 62.8%, and 62.1% in the respective order. The highest methane yield (943 mL CH4/g VS) was obtained from the slaughterhouse wastewater, and this value was 1.32, 1.58, and 4.56 times higher than those obtained in the anaerobic digestion of chocolate, gum, and beet sugar wastewaters, respectively. Among the three kinetic models tested, the logistic function best explained the behavior of the observed data of all substrates using a Quasi-Newton cubic line search procedure (R2 = 0.987–0.996) with minimum number of non-linear iterations and function counts. Deviations between the measured and the outputs of the best-fit kinetic model were less than 4.3% in prediction of methane production potentials, suggesting that the proposed computational methodology could be used as a well-suited and robust approach for modeling and optimization of a highly non-linear biosystem.
Aksaray University I... arrow_drop_down Aksaray University Institutional RepositoryArticle . 2019Data sources: Aksaray University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aksaray University I... arrow_drop_down Aksaray University Institutional RepositoryArticle . 2019Data sources: Aksaray University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Informa UK Limited Authors: Senne Van Minnebruggen; Houssam Matbouli; Stef Jacobs; Ivan Verhaert;handle: 10067/2050250151162165141
Abstract: To maximize the sustainable and economic benefits of collective heating systems, proper sizing is fundamental. This paper presents the validation of a novel sizing approach for collective systems producing and distributing heat for both space heating and domestic hot water, utilizing residential heat meter data. A validation methodology is developed to overcome the limitations of this type of data to identify the peak heat demand and estimate the peak heat demand under design outdoor conditions. The latter is estimated utilizing multiple linear regression coupled with an analysis of the maximum deviations. The power-storage characteristic, which shows all combinations of thermal power and thermal storage to meet the peak heat demand is determined and used to validate the novel sizing approach for six case studies. Although the results are promising, undersizing problems may arise in cases with decentralized heat storage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Informa UK Limited Authors: Senne Van Minnebruggen; Houssam Matbouli; Stef Jacobs; Ivan Verhaert;handle: 10067/2050250151162165141
Abstract: To maximize the sustainable and economic benefits of collective heating systems, proper sizing is fundamental. This paper presents the validation of a novel sizing approach for collective systems producing and distributing heat for both space heating and domestic hot water, utilizing residential heat meter data. A validation methodology is developed to overcome the limitations of this type of data to identify the peak heat demand and estimate the peak heat demand under design outdoor conditions. The latter is estimated utilizing multiple linear regression coupled with an analysis of the maximum deviations. The power-storage characteristic, which shows all combinations of thermal power and thermal storage to meet the peak heat demand is determined and used to validate the novel sizing approach for six case studies. Although the results are promising, undersizing problems may arise in cases with decentralized heat storage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors: Harmsen, Robert; Crijns - Graus, Wina;In this paper we evaluate two approaches for estimating CO2 emission reduction from electricity savings: one based on average CO2 intensities of electricity generation and another that relies on marginal CO2 intensities. It is found that the average CO2 intensity approach has a significant shortcoming when it comes to scenario-based approaches for CO2 emission reduction. This shortcoming lies in the chicken-egg problem created, where larger future electricity savings are actually big enough to change the CO2 intensity in such a way that it cannot be used anymore to estimate the CO2 emission reduction. We show that in these cases the marginal approach is preferred. To correctly apply this approach, it is important to determine the CO2 intensity of the future power mix which will not be built in order to avoid under or overestimation of the CO2 savings calculated. We propose a seven-step approach which can be used in scenario-based potential studies as guidance for estimating the CO2 emission reductions from not only electricity savings but also renewable electricity and mitigation options that consume electricity such as electric cars and heat pumps. Using our approach would avoid a disconnection of the CO2 reduction potential with the underlying reference scenario. © 2013 Elsevier Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors: Harmsen, Robert; Crijns - Graus, Wina;In this paper we evaluate two approaches for estimating CO2 emission reduction from electricity savings: one based on average CO2 intensities of electricity generation and another that relies on marginal CO2 intensities. It is found that the average CO2 intensity approach has a significant shortcoming when it comes to scenario-based approaches for CO2 emission reduction. This shortcoming lies in the chicken-egg problem created, where larger future electricity savings are actually big enough to change the CO2 intensity in such a way that it cannot be used anymore to estimate the CO2 emission reduction. We show that in these cases the marginal approach is preferred. To correctly apply this approach, it is important to determine the CO2 intensity of the future power mix which will not be built in order to avoid under or overestimation of the CO2 savings calculated. We propose a seven-step approach which can be used in scenario-based potential studies as guidance for estimating the CO2 emission reductions from not only electricity savings but also renewable electricity and mitigation options that consume electricity such as electric cars and heat pumps. Using our approach would avoid a disconnection of the CO2 reduction potential with the underlying reference scenario. © 2013 Elsevier Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Authors: Nick Van Hee; Herbert Peremans; Philippe Nimmegeers;handle: 10067/2071440151162165141
Abstract: To achieve net-zero emissions by 2050, as outlined in the European Green Deal, nuclear power is expected to double between 2020 and 2050, mainly due to its low-carbon baseload capacity. Small modular reactors, new nuclear reactors designed to generate up to 300 MW of electricity, could help achieve this goal. Small modular reactors have unique advantages over existing large reactors, such as modularization, learning and co-location economics. However, these small modular reactors should also be economically viable. This review therefore focuses on the costs of small modular reactors. This review found an average capital cost of €7,031/kW and an average levelized cost of electricity of 85 €/MWh for small modular reactors, while capital costs were found to be on average 41% higher than for the large reactors. Carbon and gas prices are not included in this cost estimate, yet these volatile prices also affect small modular reactor costs. However, as the absolute cost is lower, the financial risk is lower for small modular reactors. The importance of regulations, discount rates, country and project specifications and public acceptance are also considered.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Authors: Nick Van Hee; Herbert Peremans; Philippe Nimmegeers;handle: 10067/2071440151162165141
Abstract: To achieve net-zero emissions by 2050, as outlined in the European Green Deal, nuclear power is expected to double between 2020 and 2050, mainly due to its low-carbon baseload capacity. Small modular reactors, new nuclear reactors designed to generate up to 300 MW of electricity, could help achieve this goal. Small modular reactors have unique advantages over existing large reactors, such as modularization, learning and co-location economics. However, these small modular reactors should also be economically viable. This review therefore focuses on the costs of small modular reactors. This review found an average capital cost of €7,031/kW and an average levelized cost of electricity of 85 €/MWh for small modular reactors, while capital costs were found to be on average 41% higher than for the large reactors. Carbon and gas prices are not included in this cost estimate, yet these volatile prices also affect small modular reactor costs. However, as the absolute cost is lower, the financial risk is lower for small modular reactors. The importance of regulations, discount rates, country and project specifications and public acceptance are also considered.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object 2023 SerbiaPublisher:IEEE Authors: Singh, Suraj Kumar; Yadav, Sachin; Batas Bjelić, Ilija; Singh, Rhythm;The focus of this study is to analyse and compare the predictive capabilities of univariate and multivariate methods of forecasting the global horizontal irradiance (GHI) for an hour ahead. The forecasting problem is addressed using supervised machine learning methods. In order to simplify the model, a feature selection algorithm is used to identify the highly correlated features. The forecasting is performed by utilizing popular machine learning algorithms viz., random forest (RF), K-nearest neighbors regression (KNN), support vector machine (SVM) and artificial neural networks (ANN). The paper evaluates and contrasts the effectiveness of these models for this application. Additionally, the study examines how the forecasting models' performance varies throughout the year and across seasons.
DAIS - Digitalni arh... arrow_drop_down DAIS - Digitalni arhiv izdanja SANUConference objectData sources: DAIS - Digitalni arhiv izdanja SANUDAIS - Digitalni arhiv izdanja SANUConference object . 2023Data sources: DAIS - Digitalni arhiv izdanja SANUhttps://doi.org/10.1109/icest5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icest58410.2023.10187242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 25 Powered bymore_vert DAIS - Digitalni arh... arrow_drop_down DAIS - Digitalni arhiv izdanja SANUConference objectData sources: DAIS - Digitalni arhiv izdanja SANUDAIS - Digitalni arhiv izdanja SANUConference object . 2023Data sources: DAIS - Digitalni arhiv izdanja SANUhttps://doi.org/10.1109/icest5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icest58410.2023.10187242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2023 SerbiaPublisher:IEEE Authors: Singh, Suraj Kumar; Yadav, Sachin; Batas Bjelić, Ilija; Singh, Rhythm;The focus of this study is to analyse and compare the predictive capabilities of univariate and multivariate methods of forecasting the global horizontal irradiance (GHI) for an hour ahead. The forecasting problem is addressed using supervised machine learning methods. In order to simplify the model, a feature selection algorithm is used to identify the highly correlated features. The forecasting is performed by utilizing popular machine learning algorithms viz., random forest (RF), K-nearest neighbors regression (KNN), support vector machine (SVM) and artificial neural networks (ANN). The paper evaluates and contrasts the effectiveness of these models for this application. Additionally, the study examines how the forecasting models' performance varies throughout the year and across seasons.
DAIS - Digitalni arh... arrow_drop_down DAIS - Digitalni arhiv izdanja SANUConference objectData sources: DAIS - Digitalni arhiv izdanja SANUDAIS - Digitalni arhiv izdanja SANUConference object . 2023Data sources: DAIS - Digitalni arhiv izdanja SANUhttps://doi.org/10.1109/icest5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icest58410.2023.10187242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 66visibility views 66 download downloads 25 Powered bymore_vert DAIS - Digitalni arh... arrow_drop_down DAIS - Digitalni arhiv izdanja SANUConference objectData sources: DAIS - Digitalni arhiv izdanja SANUDAIS - Digitalni arhiv izdanja SANUConference object . 2023Data sources: DAIS - Digitalni arhiv izdanja SANUhttps://doi.org/10.1109/icest5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icest58410.2023.10187242&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Erten, Duygu; Kılkış, Birol;handle: 20.500.12511/8719
According to the second law of thermodynamics, all human activities cause exergy destructions, adding to additional root causes for carbon dioxide emissions responsibility. It means that current carbon dioxide concentrations are accurately observed, but the root causes and their potential solutions against global warming fall short of achieving the goals of the Paris agreement by almost 45% in terms of decarbonization efforts, as shown in this paper. This result applies to all activities, including the green facility concept. In this respect, the primary aim of this paper is to raise awareness about the essence of the Second Law of Thermodynamics in expanding the green facility concept to reach more effective and sustainable rating methodologies concerning the climate crisis. A new evaluating and rating model with a set of exergy-based green building metrics that relate additional carbon dioxide emissions to irreversible exergy destructions has been developed. Examples about apparently green buildings according to the First Law of Thermodynamics are given by showing that these buildings are not green due to additional carbon dioxide emissions responsibility due to exergy destructions. An airport terminal building case is elaborated. It has been shown that although part of the electricity comes from a third-party wind energy provider, it ends up with carbon dioxide emissions responsibility because it is not entirely used in exergy-rational demand points and compares less favorably with an on-site cogeneration system using natural gas by about 30% more emissions responsibility. The results and derivations of new metrics are discussed, which shed light on adding new criteria to existing green building certification programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Erten, Duygu; Kılkış, Birol;handle: 20.500.12511/8719
According to the second law of thermodynamics, all human activities cause exergy destructions, adding to additional root causes for carbon dioxide emissions responsibility. It means that current carbon dioxide concentrations are accurately observed, but the root causes and their potential solutions against global warming fall short of achieving the goals of the Paris agreement by almost 45% in terms of decarbonization efforts, as shown in this paper. This result applies to all activities, including the green facility concept. In this respect, the primary aim of this paper is to raise awareness about the essence of the Second Law of Thermodynamics in expanding the green facility concept to reach more effective and sustainable rating methodologies concerning the climate crisis. A new evaluating and rating model with a set of exergy-based green building metrics that relate additional carbon dioxide emissions to irreversible exergy destructions has been developed. Examples about apparently green buildings according to the First Law of Thermodynamics are given by showing that these buildings are not green due to additional carbon dioxide emissions responsibility due to exergy destructions. An airport terminal building case is elaborated. It has been shown that although part of the electricity comes from a third-party wind energy provider, it ends up with carbon dioxide emissions responsibility because it is not entirely used in exergy-rational demand points and compares less favorably with an on-site cogeneration system using natural gas by about 30% more emissions responsibility. The results and derivations of new metrics are discussed, which shed light on adding new criteria to existing green building certification programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; +1 AuthorsBatidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; Faaij, André P C;doi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; +1 AuthorsBatidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; Faaij, André P C;doi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Informa UK Limited Authors: Setareh Katircioglu; Salih Katircioglu;handle: 11467/6089
This article searches the effects of tourism development onemission pollutants in Malta using (1) the autoregressivedistributed lag approach and (2) two datasets which are annualdata from 1971 to 2018 and quarterly data from 1990Q1 tı2018Q4 as per data availability. Findings confirm that tourism,energy usage, and carbon dioxide emissions are in a long-termequilibrium relationship; carbon emissions converge rapidlytowards the long-term equilibrium path through tourism andenergy consumption channels. Findings also reveal that growthin tourism results in significant changes in energy consumptionand, therefore, in CO2emissions. Tourism has positive effects oncarbon emissions in shorter periods. Still, these effects turn out tobe harmful in the more extended periods beyond the peak pointof carbon emissions which correspond to 1,063,213 milliontourists. Therefore, this study strongly confirms the existence ofan inverted U-shaped Environmental Kuznets Curve hypothesisfor Malta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Informa UK Limited Authors: Setareh Katircioglu; Salih Katircioglu;handle: 11467/6089
This article searches the effects of tourism development onemission pollutants in Malta using (1) the autoregressivedistributed lag approach and (2) two datasets which are annualdata from 1971 to 2018 and quarterly data from 1990Q1 tı2018Q4 as per data availability. Findings confirm that tourism,energy usage, and carbon dioxide emissions are in a long-termequilibrium relationship; carbon emissions converge rapidlytowards the long-term equilibrium path through tourism andenergy consumption channels. Findings also reveal that growthin tourism results in significant changes in energy consumptionand, therefore, in CO2emissions. Tourism has positive effects oncarbon emissions in shorter periods. Still, these effects turn out tobe harmful in the more extended periods beyond the peak pointof carbon emissions which correspond to 1,063,213 milliontourists. Therefore, this study strongly confirms the existence ofan inverted U-shaped Environmental Kuznets Curve hypothesisfor Malta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors: Çetinkaya, Afşin Yusuf; Yetilmezsoy, Kaan;Abstract The present analysis was conducted as the first study to investigate the biochemical methane potential of four different agro-industrial wastewaters originating from chocolate, slaughterhouse, gum, and beet sugar industries under the same anaerobic fermentation conditions. To the best of our knowledge, no previous study has specifically attempted to pinpoint a hybrid programming strategy for making a quantitative description of the anaerobic biodegradability of these waste streams. Thus, considering the scarcity of the literature in this field, a comprehensive study was conducted to evaluate the amount of bio-methane obtainable from the investigated organic wastes and to predict their kinetics using three different sigmoidal microbial growth curve models (modified Gompertz equation, transference function (reaction curve-type model), and logistic function) within the framework an original MATLAB®-based coding scheme. The results showed that methane productions started immediately after 4 h of incubation for all substrates and reached their maximum rates of 118, 116, 108, 34 mL CH4/g VS/day, respectively, for wastewaters from chocolate, slaughterhouse, gum, and beet sugar industries. The corrected mean steady state methane contents were 61.7%, 73.4%, 62.8%, and 62.1% in the respective order. The highest methane yield (943 mL CH4/g VS) was obtained from the slaughterhouse wastewater, and this value was 1.32, 1.58, and 4.56 times higher than those obtained in the anaerobic digestion of chocolate, gum, and beet sugar wastewaters, respectively. Among the three kinetic models tested, the logistic function best explained the behavior of the observed data of all substrates using a Quasi-Newton cubic line search procedure (R2 = 0.987–0.996) with minimum number of non-linear iterations and function counts. Deviations between the measured and the outputs of the best-fit kinetic model were less than 4.3% in prediction of methane production potentials, suggesting that the proposed computational methodology could be used as a well-suited and robust approach for modeling and optimization of a highly non-linear biosystem.
Aksaray University I... arrow_drop_down Aksaray University Institutional RepositoryArticle . 2019Data sources: Aksaray University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aksaray University I... arrow_drop_down Aksaray University Institutional RepositoryArticle . 2019Data sources: Aksaray University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Authors: Çetinkaya, Afşin Yusuf; Yetilmezsoy, Kaan;Abstract The present analysis was conducted as the first study to investigate the biochemical methane potential of four different agro-industrial wastewaters originating from chocolate, slaughterhouse, gum, and beet sugar industries under the same anaerobic fermentation conditions. To the best of our knowledge, no previous study has specifically attempted to pinpoint a hybrid programming strategy for making a quantitative description of the anaerobic biodegradability of these waste streams. Thus, considering the scarcity of the literature in this field, a comprehensive study was conducted to evaluate the amount of bio-methane obtainable from the investigated organic wastes and to predict their kinetics using three different sigmoidal microbial growth curve models (modified Gompertz equation, transference function (reaction curve-type model), and logistic function) within the framework an original MATLAB®-based coding scheme. The results showed that methane productions started immediately after 4 h of incubation for all substrates and reached their maximum rates of 118, 116, 108, 34 mL CH4/g VS/day, respectively, for wastewaters from chocolate, slaughterhouse, gum, and beet sugar industries. The corrected mean steady state methane contents were 61.7%, 73.4%, 62.8%, and 62.1% in the respective order. The highest methane yield (943 mL CH4/g VS) was obtained from the slaughterhouse wastewater, and this value was 1.32, 1.58, and 4.56 times higher than those obtained in the anaerobic digestion of chocolate, gum, and beet sugar wastewaters, respectively. Among the three kinetic models tested, the logistic function best explained the behavior of the observed data of all substrates using a Quasi-Newton cubic line search procedure (R2 = 0.987–0.996) with minimum number of non-linear iterations and function counts. Deviations between the measured and the outputs of the best-fit kinetic model were less than 4.3% in prediction of methane production potentials, suggesting that the proposed computational methodology could be used as a well-suited and robust approach for modeling and optimization of a highly non-linear biosystem.
Aksaray University I... arrow_drop_down Aksaray University Institutional RepositoryArticle . 2019Data sources: Aksaray University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aksaray University I... arrow_drop_down Aksaray University Institutional RepositoryArticle . 2019Data sources: Aksaray University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Informa UK Limited Authors: Senne Van Minnebruggen; Houssam Matbouli; Stef Jacobs; Ivan Verhaert;handle: 10067/2050250151162165141
Abstract: To maximize the sustainable and economic benefits of collective heating systems, proper sizing is fundamental. This paper presents the validation of a novel sizing approach for collective systems producing and distributing heat for both space heating and domestic hot water, utilizing residential heat meter data. A validation methodology is developed to overcome the limitations of this type of data to identify the peak heat demand and estimate the peak heat demand under design outdoor conditions. The latter is estimated utilizing multiple linear regression coupled with an analysis of the maximum deviations. The power-storage characteristic, which shows all combinations of thermal power and thermal storage to meet the peak heat demand is determined and used to validate the novel sizing approach for six case studies. Although the results are promising, undersizing problems may arise in cases with decentralized heat storage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Informa UK Limited Authors: Senne Van Minnebruggen; Houssam Matbouli; Stef Jacobs; Ivan Verhaert;handle: 10067/2050250151162165141
Abstract: To maximize the sustainable and economic benefits of collective heating systems, proper sizing is fundamental. This paper presents the validation of a novel sizing approach for collective systems producing and distributing heat for both space heating and domestic hot water, utilizing residential heat meter data. A validation methodology is developed to overcome the limitations of this type of data to identify the peak heat demand and estimate the peak heat demand under design outdoor conditions. The latter is estimated utilizing multiple linear regression coupled with an analysis of the maximum deviations. The power-storage characteristic, which shows all combinations of thermal power and thermal storage to meet the peak heat demand is determined and used to validate the novel sizing approach for six case studies. Although the results are promising, undersizing problems may arise in cases with decentralized heat storage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors: Harmsen, Robert; Crijns - Graus, Wina;In this paper we evaluate two approaches for estimating CO2 emission reduction from electricity savings: one based on average CO2 intensities of electricity generation and another that relies on marginal CO2 intensities. It is found that the average CO2 intensity approach has a significant shortcoming when it comes to scenario-based approaches for CO2 emission reduction. This shortcoming lies in the chicken-egg problem created, where larger future electricity savings are actually big enough to change the CO2 intensity in such a way that it cannot be used anymore to estimate the CO2 emission reduction. We show that in these cases the marginal approach is preferred. To correctly apply this approach, it is important to determine the CO2 intensity of the future power mix which will not be built in order to avoid under or overestimation of the CO2 savings calculated. We propose a seven-step approach which can be used in scenario-based potential studies as guidance for estimating the CO2 emission reductions from not only electricity savings but also renewable electricity and mitigation options that consume electricity such as electric cars and heat pumps. Using our approach would avoid a disconnection of the CO2 reduction potential with the underlying reference scenario. © 2013 Elsevier Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors: Harmsen, Robert; Crijns - Graus, Wina;In this paper we evaluate two approaches for estimating CO2 emission reduction from electricity savings: one based on average CO2 intensities of electricity generation and another that relies on marginal CO2 intensities. It is found that the average CO2 intensity approach has a significant shortcoming when it comes to scenario-based approaches for CO2 emission reduction. This shortcoming lies in the chicken-egg problem created, where larger future electricity savings are actually big enough to change the CO2 intensity in such a way that it cannot be used anymore to estimate the CO2 emission reduction. We show that in these cases the marginal approach is preferred. To correctly apply this approach, it is important to determine the CO2 intensity of the future power mix which will not be built in order to avoid under or overestimation of the CO2 savings calculated. We propose a seven-step approach which can be used in scenario-based potential studies as guidance for estimating the CO2 emission reductions from not only electricity savings but also renewable electricity and mitigation options that consume electricity such as electric cars and heat pumps. Using our approach would avoid a disconnection of the CO2 reduction potential with the underlying reference scenario. © 2013 Elsevier Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.05.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Authors: Nick Van Hee; Herbert Peremans; Philippe Nimmegeers;handle: 10067/2071440151162165141
Abstract: To achieve net-zero emissions by 2050, as outlined in the European Green Deal, nuclear power is expected to double between 2020 and 2050, mainly due to its low-carbon baseload capacity. Small modular reactors, new nuclear reactors designed to generate up to 300 MW of electricity, could help achieve this goal. Small modular reactors have unique advantages over existing large reactors, such as modularization, learning and co-location economics. However, these small modular reactors should also be economically viable. This review therefore focuses on the costs of small modular reactors. This review found an average capital cost of €7,031/kW and an average levelized cost of electricity of 85 €/MWh for small modular reactors, while capital costs were found to be on average 41% higher than for the large reactors. Carbon and gas prices are not included in this cost estimate, yet these volatile prices also affect small modular reactor costs. However, as the absolute cost is lower, the financial risk is lower for small modular reactors. The importance of regulations, discount rates, country and project specifications and public acceptance are also considered.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Authors: Nick Van Hee; Herbert Peremans; Philippe Nimmegeers;handle: 10067/2071440151162165141
Abstract: To achieve net-zero emissions by 2050, as outlined in the European Green Deal, nuclear power is expected to double between 2020 and 2050, mainly due to its low-carbon baseload capacity. Small modular reactors, new nuclear reactors designed to generate up to 300 MW of electricity, could help achieve this goal. Small modular reactors have unique advantages over existing large reactors, such as modularization, learning and co-location economics. However, these small modular reactors should also be economically viable. This review therefore focuses on the costs of small modular reactors. This review found an average capital cost of €7,031/kW and an average levelized cost of electricity of 85 €/MWh for small modular reactors, while capital costs were found to be on average 41% higher than for the large reactors. Carbon and gas prices are not included in this cost estimate, yet these volatile prices also affect small modular reactor costs. However, as the absolute cost is lower, the financial risk is lower for small modular reactors. The importance of regulations, discount rates, country and project specifications and public acceptance are also considered.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu