- home
- Advanced Search
- Energy Research
- other engineering and technologies
- Sensors
- Energy Research
- other engineering and technologies
- Sensors
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Authors: Peilin Huang; Huizong Yu; Feng Yang; Lin Du;With the development of intelligent modern power systems, real-time sensing and monitoring of system operating conditions have become one of the enabling technologies. Due to their flexibility, robustness and broad serviceable scope, wireless sensor networks have become a promising candidate for achieving the condition monitoring in a power grid. In order to solve the problematic power supplies of the sensors, energy harvesting (EH) technology has attracted increasing research interest. The motivation of this paper is to investigate the profiles of harnessing the electric and magnetic fields and facilitate the further application of energy scavenging techniques in the context of power systems. In this paper, the fundamentals, current status, challenges, and future prospects of the two most applicable EH methods in the grid—magnetic field energy harvesting (MEH) and electric field energy harvesting (EEH) are reviewed. The characteristics of the magnetic field and electric field under typical scenarios in power systems is analyzed first. Then the MEH and EEH are classified and reviewed respectively according to the structural difference of energy harvesters, which have been further evaluated based on the comparison of advantages and disadvantages for the future development trend.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20051496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20051496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Sanguk Park; Keonhee Cho; Seunghwan Kim; Guwon Yoon; Myeong-In Choi; Sangmin Park; Sehyun Park;Smart energy technologies, services, and business models are being developed to reduce energy consumption and emissions of CO2 and greenhouse gases and to build a sustainable environment. Renewable energy is being actively developed throughout the world, and many intelligent service models related to renewable energy are being proposed. One of the representative service models is the energy prosumer. Through energy trading, the demand for renewable energy and distributed power is efficiently managed, and insufficient energy is covered through energy transaction. Moreover, various incentives can be provided, such as reduced electricity bills. However, despite such a smart service, the energy prosumer model is difficult to expand into a practical business model for application in real life. This is because the production price of renewable energy is higher than that of the actual grid, and it is difficult to accurately set the selling price, restricting the formation of the actual market between sellers and consumers. To solve this problem, this paper proposes a small-scale energy transaction model between a seller and a buyer on a peer-to-peer (P2P) basis. This model employs a virtual prosumer management system that utilizes the existing grid and realizes the power system in real time without using an energy storage system (ESS). Thus, the profits of sellers and consumers of energy transactions are maximized with an improved return on investment (ROI), and an intelligent demand management system can be established.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4533/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4533/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Authors: Saad A. Mohamed Abdelwahab; Ali M. El-Rifaie; Hossam Youssef Hegazy; Mohamed A. Tolba; +2 AuthorsSaad A. Mohamed Abdelwahab; Ali M. El-Rifaie; Hossam Youssef Hegazy; Mohamed A. Tolba; Wael I. Mohamed; Moayed Mohamed;This paper presents a comprehensive exploration of a hybrid energy system that integrates wind turbines with photovoltaics (PVs) to address the intermittent nature of electricity production from these sources. The necessity for such technology arises from the sporadic nature of electricity generated by PV cells and wind turbines. The envisioned outcome is an emissions-free, more efficient alternative to traditional energy sources. A variety of optimization techniques are utilized, specifically the Particle Swarm Optimization (PSO) algorithm and Electric Eel Foraging Optimization (EEFO), to achieve optimal power regulation and seamless integration with the public grid, as well as to mitigate anticipated loading issues. The employed mathematical modeling and simulation techniques are used to assess the effectiveness of EEFO in optimizing the operation of grid-connected PV and wind turbine hybrid systems. In this paper, the optimization methods applied to the system’s architecture are described in detail, providing a clear understanding of the intricate nature of the approach. The efficacy of these optimization strategies is rigorously evaluated through simulations of diverse operating scenarios using MATLAB/SIMULINK. The results demonstrate that the proposed optimization strategies are not only capable of precisely and swiftly compensating for linked loads, but also effectively controlling the energy supply to maintain the load’s power at the desired level. The findings underscore the potential of this hybrid energy system to offer a sustainable and reliable solution for meeting power demands, contributing to the advancement of clean and efficient energy technologies. The results demonstrate the capability of the proposed approach to improve system performance, maximize energy yield, and enhance grid integration, thereby contributing to the advancement of renewable energy technologies and sustainable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24072354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24072354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Bahareh Kiamanesh; Ali Behravan; Roman Obermaisser;Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Gaggero, Giovanni Battista; Caviglia, Roberto; Armellin, Alessandro; Rossi, Mansueto; +2 AuthorsGaggero, Giovanni Battista; Caviglia, Roberto; Armellin, Alessandro; Rossi, Mansueto; Girdinio, Paola; Marchese, Mario;Distributed Energy Resources (DERs) are growing in importance Power Systems. Battery Electrical Storage Systems (BESS) represent fundamental tools in order to balance the unpredictable power production of some Renewable Energy Sources (RES). Nevertheless, BESS are usually remotely controlled by SCADA systems, so they are prone to cyberattacks. This paper analyzes the vulnerabilities of BESS and proposes an anomaly detection algorithm that, by observing the physical behavior of the system, aims to promptly detect dangerous working conditions by exploiting the capabilities of a particular neural network architecture called the autoencoder. The results show the performance of the proposed approach with respect to the traditional One Class Support Vector Machine algorithm.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/10/3933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22103933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/10/3933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22103933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohammed F. Alsharekh; Shabana Habib; Deshinta Arrova Dewi; Waleed Albattah; Muhammad Islam; Saleh Albahli;Multistep power consumption forecasting is smart grid electricity management’s most decisive problem. Moreover, it is vital to develop operational strategies for electricity management systems in smart cities for commercial and residential users. However, an efficient electricity load forecasting model is required for accurate electric power management in an intelligent grid, leading to customer financial benefits. In this article, we develop an innovative framework for short-term electricity load forecasting, which includes two significant phases: data cleaning and a Residual Convolutional Neural Network (R-CNN) with multilayered Long Short-Term Memory (ML-LSTM) architecture. Data preprocessing strategies are applied in the first phase over raw data. A deep R-CNN architecture is developed in the second phase to extract essential features from the refined electricity consumption data. The output of R-CNN layers is fed into the ML-LSTM network to learn the sequence information, and finally, fully connected layers are used for the forecasting. The proposed model is evaluated over residential IHEPC and commercial PJM datasets and extensively decreases the error rates compared to baseline models.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6913/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6913/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:MDPI AG Mota, Lia; Mota, Alexandre; Pezzuto, Cláudia; Carvalho, Marcius; Lavorato, Marina; Coiado, Lorenzo; Oliveira, Everton;The air temperature increase in urban centers can lead to problems such as increased energy consumption associated to air conditioning, the intensification of pollution, human discomfort and health problems. In this context, the building envelope plays an important role in urban thermal equilibrium. Energy efficiency rating systems for buildings (LEED—Leadership in Energy and Environmental Design, AQUA—High Environmental Quality, PROCEL Edifica, etc.) stimulate energy efficiency actions in the built environment, considering, for example, the envelope and energy efficiency initiatives in buildings. Research carried out recently has shown that monitoring of buildings can provide important information about building performance, supporting building control strategies and enabling actions aimed at improving energy efficiency and thermal comfort. More specifically, wireless sensors are also being used to monitor buildings. This work proposes and presents the development of a surface temperature sensor that can support actions to enhance energy efficiency in the built environment, meeting the requirements proposed by the energy efficiency rating systems of buildings. This sensor must have characteristics such as low cost, the storage capacity of a large amount of data and the possibility of remote monitoring of the collected temperatures. Computer simulations and validation tests were carried out showing that the proposed sensor allows the remote monitoring (using a wireless transmission system) of the surface temperature in buildings, respecting the requirements of high storage capability and low cost.
Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/9/3046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s18093046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/9/3046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s18093046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Javier Antonio Guerra; Juan Ignacio Guerrero; Sebastián García; Samuel Domínguez-Cid; +2 AuthorsJavier Antonio Guerra; Juan Ignacio Guerrero; Sebastián García; Samuel Domínguez-Cid; Diego Francisco Larios; Carlos León;The proposal of this paper is to introduce a low-level blockchain marketplace, which is a blockchain where participants could share its power generation and demand. To achieve this implementation in a secure way for each actor in the network, we proposed to deploy it over efficient and generic low-performance devices. Thus, they are installed as IoT devices, registering measurements each fifteen minutes, and also acting as blockchain nodes for the marketplace. Nevertheless, it is necessary that blockchain is lightweight, so it is implemented as a specific consensus protocol that allows each node to have enough time and computer requirements to act both as an IoT device and a blockchain node. This marketplace will be ruled by Smart Contracts deployed inside the blockchain. With them, it is possible to make registers for power generation and demand. This low-level marketplace could be connected to other services to execute matching algorithms from the data stored in the blockchain. Finally, a real test-bed implementation of the marketplace was tested, to confirm that it is technically feasible.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/3/1131/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22031131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/3/1131/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22031131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Authors: Yung-Yao Chen; Yu-Hsiu Lin;Electrical energy management, or demand-side management (DSM), in a smart grid is very important for electrical energy savings. With the high penetration rate of the Internet of Things (IoT) paradigm in modern society, IoT-oriented electrical energy management systems (EMSs) in DSM are capable of skillfully monitoring the energy consumption of electrical appliances. While many of today’s IoT devices used in EMSs take advantage of cloud analytics, IoT manufacturers and application developers are devoting themselves to novel IoT devices developed at the edge of the Internet. In this study, a smart autonomous time and frequency analysis current sensor-based power meter prototype, a novel IoT end device, in an edge analytics-based artificial intelligence (AI) across IoT (AIoT) architecture launched with cloud analytics is developed. The prototype has assembled hardware and software to be developed over fog-cloud analytics for DSM in a smart grid. Advanced AI well trained offline in cloud analytics is autonomously and automatically deployed onsite on the prototype as edge analytics at the edge of the Internet for online load identification in DSM. In this study, auto-labeling, or online load identification, of electrical appliances monitored by the developed prototype in the launched edge analytics-based AIoT architecture is experimentally demonstrated. As the proof-of-concept demonstration of the prototype shows, the methodology in this study is feasible and workable.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/20/4443/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19204443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/20/4443/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19204443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007Publisher:MDPI AG Authors: Li-Min Yang; Lingyun Zheng; Fengmei Yao; Jiahua Zhang;The grassland ecosystem in the Northern-Tibet Plateau (NTP) of China is verysensitive to weather and climate conditions of the region. In this study, we investigate thespatial and temporal variations of the grassland ecosystem in the NTP using theNOAA/AVHRR ten-day maximum NDVI composite data of 1981-2001. The relationshipsamong Vegetation Peak-Normalized Difference Vegetation Index (VP-NDVI) and climatevariables were quantified for six counties within the NTP. The notable and unevenalterations of the grassland in response to variation of climate and human impact in theNTP were revealed. Over the last two decades of the 20th century, the maximum greennessof the grassland has exhibited high increase, slight increase, no-change, slight decrease andhigh decrease, each occupies 0.27%, 8.71%, 77.27%, 13.06% and 0.69% of the total area ofthe NTP, respectively. A remarkable increase (decrease) in VP-NDVI occurred in thecentral-eastern (eastern) NTP whereas little change was observed in the western andnorthwestern NTP. A strong negative relationship between VP-NDVI and ET0 was foundin sub-frigid, semi-arid and frigid- arid regions of the NTP (i.e., Nakchu, Shantsa, Palgonand Amdo counties), suggesting that the ET0 is one limiting factor affecting grasslanddegradation. In the temperate-humid, sub-frigid and sub-humid regions of the NTP (Chaliand Sokshan counties), a significant inverse correlation between VP-NDVI and populationindicates that human activities have adversely affected the grassland condition as waspreviously reported in the literature. Results from this research suggest that the alterationand degradation of the grassland in the lower altitude of the NTP over the last two decades of the 20th century are likely caused by variations of climate and anthropogenic activities.
Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 49 citations 49 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Authors: Peilin Huang; Huizong Yu; Feng Yang; Lin Du;With the development of intelligent modern power systems, real-time sensing and monitoring of system operating conditions have become one of the enabling technologies. Due to their flexibility, robustness and broad serviceable scope, wireless sensor networks have become a promising candidate for achieving the condition monitoring in a power grid. In order to solve the problematic power supplies of the sensors, energy harvesting (EH) technology has attracted increasing research interest. The motivation of this paper is to investigate the profiles of harnessing the electric and magnetic fields and facilitate the further application of energy scavenging techniques in the context of power systems. In this paper, the fundamentals, current status, challenges, and future prospects of the two most applicable EH methods in the grid—magnetic field energy harvesting (MEH) and electric field energy harvesting (EEH) are reviewed. The characteristics of the magnetic field and electric field under typical scenarios in power systems is analyzed first. Then the MEH and EEH are classified and reviewed respectively according to the structural difference of energy harvesters, which have been further evaluated based on the comparison of advantages and disadvantages for the future development trend.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20051496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20051496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Sanguk Park; Keonhee Cho; Seunghwan Kim; Guwon Yoon; Myeong-In Choi; Sangmin Park; Sehyun Park;Smart energy technologies, services, and business models are being developed to reduce energy consumption and emissions of CO2 and greenhouse gases and to build a sustainable environment. Renewable energy is being actively developed throughout the world, and many intelligent service models related to renewable energy are being proposed. One of the representative service models is the energy prosumer. Through energy trading, the demand for renewable energy and distributed power is efficiently managed, and insufficient energy is covered through energy transaction. Moreover, various incentives can be provided, such as reduced electricity bills. However, despite such a smart service, the energy prosumer model is difficult to expand into a practical business model for application in real life. This is because the production price of renewable energy is higher than that of the actual grid, and it is difficult to accurately set the selling price, restricting the formation of the actual market between sellers and consumers. To solve this problem, this paper proposes a small-scale energy transaction model between a seller and a buyer on a peer-to-peer (P2P) basis. This model employs a virtual prosumer management system that utilizes the existing grid and realizes the power system in real time without using an energy storage system (ESS). Thus, the profits of sellers and consumers of energy transactions are maximized with an improved return on investment (ROI), and an intelligent demand management system can be established.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4533/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4533/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Authors: Saad A. Mohamed Abdelwahab; Ali M. El-Rifaie; Hossam Youssef Hegazy; Mohamed A. Tolba; +2 AuthorsSaad A. Mohamed Abdelwahab; Ali M. El-Rifaie; Hossam Youssef Hegazy; Mohamed A. Tolba; Wael I. Mohamed; Moayed Mohamed;This paper presents a comprehensive exploration of a hybrid energy system that integrates wind turbines with photovoltaics (PVs) to address the intermittent nature of electricity production from these sources. The necessity for such technology arises from the sporadic nature of electricity generated by PV cells and wind turbines. The envisioned outcome is an emissions-free, more efficient alternative to traditional energy sources. A variety of optimization techniques are utilized, specifically the Particle Swarm Optimization (PSO) algorithm and Electric Eel Foraging Optimization (EEFO), to achieve optimal power regulation and seamless integration with the public grid, as well as to mitigate anticipated loading issues. The employed mathematical modeling and simulation techniques are used to assess the effectiveness of EEFO in optimizing the operation of grid-connected PV and wind turbine hybrid systems. In this paper, the optimization methods applied to the system’s architecture are described in detail, providing a clear understanding of the intricate nature of the approach. The efficacy of these optimization strategies is rigorously evaluated through simulations of diverse operating scenarios using MATLAB/SIMULINK. The results demonstrate that the proposed optimization strategies are not only capable of precisely and swiftly compensating for linked loads, but also effectively controlling the energy supply to maintain the load’s power at the desired level. The findings underscore the potential of this hybrid energy system to offer a sustainable and reliable solution for meeting power demands, contributing to the advancement of clean and efficient energy technologies. The results demonstrate the capability of the proposed approach to improve system performance, maximize energy yield, and enhance grid integration, thereby contributing to the advancement of renewable energy technologies and sustainable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24072354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24072354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Bahareh Kiamanesh; Ali Behravan; Roman Obermaisser;Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Gaggero, Giovanni Battista; Caviglia, Roberto; Armellin, Alessandro; Rossi, Mansueto; +2 AuthorsGaggero, Giovanni Battista; Caviglia, Roberto; Armellin, Alessandro; Rossi, Mansueto; Girdinio, Paola; Marchese, Mario;Distributed Energy Resources (DERs) are growing in importance Power Systems. Battery Electrical Storage Systems (BESS) represent fundamental tools in order to balance the unpredictable power production of some Renewable Energy Sources (RES). Nevertheless, BESS are usually remotely controlled by SCADA systems, so they are prone to cyberattacks. This paper analyzes the vulnerabilities of BESS and proposes an anomaly detection algorithm that, by observing the physical behavior of the system, aims to promptly detect dangerous working conditions by exploiting the capabilities of a particular neural network architecture called the autoencoder. The results show the performance of the proposed approach with respect to the traditional One Class Support Vector Machine algorithm.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/10/3933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22103933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/10/3933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22103933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohammed F. Alsharekh; Shabana Habib; Deshinta Arrova Dewi; Waleed Albattah; Muhammad Islam; Saleh Albahli;Multistep power consumption forecasting is smart grid electricity management’s most decisive problem. Moreover, it is vital to develop operational strategies for electricity management systems in smart cities for commercial and residential users. However, an efficient electricity load forecasting model is required for accurate electric power management in an intelligent grid, leading to customer financial benefits. In this article, we develop an innovative framework for short-term electricity load forecasting, which includes two significant phases: data cleaning and a Residual Convolutional Neural Network (R-CNN) with multilayered Long Short-Term Memory (ML-LSTM) architecture. Data preprocessing strategies are applied in the first phase over raw data. A deep R-CNN architecture is developed in the second phase to extract essential features from the refined electricity consumption data. The output of R-CNN layers is fed into the ML-LSTM network to learn the sequence information, and finally, fully connected layers are used for the forecasting. The proposed model is evaluated over residential IHEPC and commercial PJM datasets and extensively decreases the error rates compared to baseline models.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6913/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6913/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:MDPI AG Mota, Lia; Mota, Alexandre; Pezzuto, Cláudia; Carvalho, Marcius; Lavorato, Marina; Coiado, Lorenzo; Oliveira, Everton;The air temperature increase in urban centers can lead to problems such as increased energy consumption associated to air conditioning, the intensification of pollution, human discomfort and health problems. In this context, the building envelope plays an important role in urban thermal equilibrium. Energy efficiency rating systems for buildings (LEED—Leadership in Energy and Environmental Design, AQUA—High Environmental Quality, PROCEL Edifica, etc.) stimulate energy efficiency actions in the built environment, considering, for example, the envelope and energy efficiency initiatives in buildings. Research carried out recently has shown that monitoring of buildings can provide important information about building performance, supporting building control strategies and enabling actions aimed at improving energy efficiency and thermal comfort. More specifically, wireless sensors are also being used to monitor buildings. This work proposes and presents the development of a surface temperature sensor that can support actions to enhance energy efficiency in the built environment, meeting the requirements proposed by the energy efficiency rating systems of buildings. This sensor must have characteristics such as low cost, the storage capacity of a large amount of data and the possibility of remote monitoring of the collected temperatures. Computer simulations and validation tests were carried out showing that the proposed sensor allows the remote monitoring (using a wireless transmission system) of the surface temperature in buildings, respecting the requirements of high storage capability and low cost.
Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/9/3046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s18093046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/9/3046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s18093046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Javier Antonio Guerra; Juan Ignacio Guerrero; Sebastián García; Samuel Domínguez-Cid; +2 AuthorsJavier Antonio Guerra; Juan Ignacio Guerrero; Sebastián García; Samuel Domínguez-Cid; Diego Francisco Larios; Carlos León;The proposal of this paper is to introduce a low-level blockchain marketplace, which is a blockchain where participants could share its power generation and demand. To achieve this implementation in a secure way for each actor in the network, we proposed to deploy it over efficient and generic low-performance devices. Thus, they are installed as IoT devices, registering measurements each fifteen minutes, and also acting as blockchain nodes for the marketplace. Nevertheless, it is necessary that blockchain is lightweight, so it is implemented as a specific consensus protocol that allows each node to have enough time and computer requirements to act both as an IoT device and a blockchain node. This marketplace will be ruled by Smart Contracts deployed inside the blockchain. With them, it is possible to make registers for power generation and demand. This low-level marketplace could be connected to other services to execute matching algorithms from the data stored in the blockchain. Finally, a real test-bed implementation of the marketplace was tested, to confirm that it is technically feasible.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/3/1131/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22031131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/3/1131/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BYData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22031131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Authors: Yung-Yao Chen; Yu-Hsiu Lin;Electrical energy management, or demand-side management (DSM), in a smart grid is very important for electrical energy savings. With the high penetration rate of the Internet of Things (IoT) paradigm in modern society, IoT-oriented electrical energy management systems (EMSs) in DSM are capable of skillfully monitoring the energy consumption of electrical appliances. While many of today’s IoT devices used in EMSs take advantage of cloud analytics, IoT manufacturers and application developers are devoting themselves to novel IoT devices developed at the edge of the Internet. In this study, a smart autonomous time and frequency analysis current sensor-based power meter prototype, a novel IoT end device, in an edge analytics-based artificial intelligence (AI) across IoT (AIoT) architecture launched with cloud analytics is developed. The prototype has assembled hardware and software to be developed over fog-cloud analytics for DSM in a smart grid. Advanced AI well trained offline in cloud analytics is autonomously and automatically deployed onsite on the prototype as edge analytics at the edge of the Internet for online load identification in DSM. In this study, auto-labeling, or online load identification, of electrical appliances monitored by the developed prototype in the launched edge analytics-based AIoT architecture is experimentally demonstrated. As the proof-of-concept demonstration of the prototype shows, the methodology in this study is feasible and workable.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/20/4443/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19204443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/20/4443/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19204443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007Publisher:MDPI AG Authors: Li-Min Yang; Lingyun Zheng; Fengmei Yao; Jiahua Zhang;The grassland ecosystem in the Northern-Tibet Plateau (NTP) of China is verysensitive to weather and climate conditions of the region. In this study, we investigate thespatial and temporal variations of the grassland ecosystem in the NTP using theNOAA/AVHRR ten-day maximum NDVI composite data of 1981-2001. The relationshipsamong Vegetation Peak-Normalized Difference Vegetation Index (VP-NDVI) and climatevariables were quantified for six counties within the NTP. The notable and unevenalterations of the grassland in response to variation of climate and human impact in theNTP were revealed. Over the last two decades of the 20th century, the maximum greennessof the grassland has exhibited high increase, slight increase, no-change, slight decrease andhigh decrease, each occupies 0.27%, 8.71%, 77.27%, 13.06% and 0.69% of the total area ofthe NTP, respectively. A remarkable increase (decrease) in VP-NDVI occurred in thecentral-eastern (eastern) NTP whereas little change was observed in the western andnorthwestern NTP. A strong negative relationship between VP-NDVI and ET0 was foundin sub-frigid, semi-arid and frigid- arid regions of the NTP (i.e., Nakchu, Shantsa, Palgonand Amdo counties), suggesting that the ET0 is one limiting factor affecting grasslanddegradation. In the temperate-humid, sub-frigid and sub-humid regions of the NTP (Chaliand Sokshan counties), a significant inverse correlation between VP-NDVI and populationindicates that human activities have adversely affected the grassland condition as waspreviously reported in the literature. Results from this research suggest that the alterationand degradation of the grassland in the lower altitude of the NTP over the last two decades of the 20th century are likely caused by variations of climate and anthropogenic activities.
Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 49 citations 49 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2007License: CC BYFull-Text: http://www.mdpi.com/1424-8220/7/12/3312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s7123312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu