- home
- Advanced Search
- Energy Research
- medical and health sciences
- 12. Responsible consumption
- Bioresource Technology
- Energy Research
- medical and health sciences
- 12. Responsible consumption
- Bioresource Technology
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Sunah Kim;Hyungjoon Im;
Jaecheul Yu; Keunho Kim; +2 AuthorsHyungjoon Im
Hyungjoon Im in OpenAIRESunah Kim;Hyungjoon Im;
Jaecheul Yu; Keunho Kim; Minjeong Kim;Hyungjoon Im
Hyungjoon Im in OpenAIRETaeho Lee;
Taeho Lee
Taeho Lee in OpenAIREpmid: 36610485
Sustainable aviation fuels (SAFs) can contribute reduce greenhouse gas emissions compared to conventional fuel. With the increasing SAFs demand, various generations of resources have been shifted from the 1st generation (oil crops), the 2nd generation (agricultural waste), to the 3rd generation (microalgae). Microalgae are the most suitable feedstock for jet biofuel production than other resources because of their productivity and capability to capture carbon dioxide. However, microalgae-based biofuel has a limitation of high freezing point. Recently, a jet biofuel derived from Euglena wax ester has been paying attention due to its low freezing point. Challenges still remain to enhance production yields in both upstream and downstream processes. Studies on downstream processes as well as techno-economic analysis on biofuel production using Euglena are highly limited to date. Economic aspects for the biofuel production will be ensured via valorization of industrial byproducts such as food wastes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Claudio Fuentes Grunewald; Claudio Grunewald; Jose Gayo Pelaez; Vanessa Ndovela; +3 AuthorsClaudio Fuentes Grunewald; Claudio Grunewald; Jose Gayo Pelaez; Vanessa Ndovela; Ellie Wood;Rahul Kapoore;
Rahul Kapoore
Rahul Kapoore in OpenAIRECarole Llewellyn;
Carole Llewellyn
Carole Llewellyn in OpenAIREpmid: 33181476
Implementing a circular economy aimed at reusing resources is becoming increasingly important for industry. Microalgae fit within a circular economy by being able to bioremediate nutrient waste and as a source of biomass for several commercial applications. Here, we report a novel validation of a circular economy concept using microalgae at a relevant industrial scale with a new two-phase process. During the first phase biomass was grown autotrophically, biomass was then concentrated using membrane technology for the second phase where mixotrophic conditions were applied to boost growth further. Microalgae cultures were able to grow (13.8 g/L), uptake and bioremediate nutrients (Nitrogen > 134 mg/L/day) from an anaerobic digestion side-stream (digestate), obtaining high quality microalgae biomass (>45% protein content) suitable for use as animal feed, closing the circular economy loop for industrial applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Veeramuthu, Ashokkumar; Shanmugam, Jayashree;Gopalakrishnan, Kumar;
S, Aruna Sharmili; +8 AuthorsGopalakrishnan, Kumar
Gopalakrishnan, Kumar in OpenAIREVeeramuthu, Ashokkumar; Shanmugam, Jayashree;Gopalakrishnan, Kumar;
S, Aruna Sharmili;Gopalakrishnan, Kumar
Gopalakrishnan, Kumar in OpenAIREMayakkannan, Gopal;
Selvakumar, Dharmaraj; Wei-Hsin, Chen;Mayakkannan, Gopal
Mayakkannan, Gopal in OpenAIRERicha, Kothari;
Isukapatla, Manasa; Jeong, Hoon Park; Sampathkumar, Shruthi; Chawalit, Ngamcharussrivichai;Richa, Kothari
Richa, Kothari in OpenAIREpmid: 35487449
The macroalgal industry is expanding, and the quest for novel ingredients to improve and develop innovative products is crucial. Consumers are increasingly looking for natural-derived ingredients in cosmetic products that have been proven to be effective and safe. Macroalgae-derived compounds have growing popularity in skincare products as they are natural, abundant, biocompatible, and renewable. Due to their high biomass yields, rapid growth rates, and cultivation process, they are gaining widespread recognition as potentially sustainable resources better suited for biorefinery processes. This review demonstrates macroalgae metabolites and their industrial applications in moisturizers, anti-aging, skin whitening, hair, and oral care products. These chemicals can be obtained in combination with energy products to increase the value of macroalgae from an industrial perspective with a zero-waste approach by linking multiple refineries. The key challenges, bottlenecks, and future perspectives in the operation and outlook of macroalgal biorefineries were also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Shuguang Li; Meng Zhang; Kuikui Li; Haidong Tan;Guojun Yang;
Jia Che; Heng Yin; Heng Yin; Wei Chen;Guojun Yang
Guojun Yang in OpenAIREpmid: 31887580
Citrus wastes disposal is a problem faced by many juice plants due to high disposal costs. However, the citrus peel wastes (CPW) biomass, as bulk bioresources from the agro-industrial waste, is a good source of pectin. Present study aimed to utilize these CPW biomass by engineered yeast strain fermentation with an inexpensive method to produce oligogalacturonides (OGs). The results showed that the engineered yeast strain fermentation can produce significant amounts of OGs with the degree of polymerization ranged from 2 to 7 from the CPW bioresources. Under the optimized conditions using the response surface methodology, the best OGs yield were 26.1%. The present work is the first to use the engineered yeast strain for direct CPW biomass fermentation produced the OGs. We thereby paved a new way to utilize the pectin-rich bioresources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Amanda Silva de Sousa;
Suzane R. Dionisio; Samantha C. Santos;Amanda Silva de Sousa
Amanda Silva de Sousa in OpenAIREAline Carvalho da Costa;
+5 AuthorsAline Carvalho da Costa
Aline Carvalho da Costa in OpenAIREAmanda Silva de Sousa;
Suzane R. Dionisio; Samantha C. Santos;Amanda Silva de Sousa
Amanda Silva de Sousa in OpenAIREAline Carvalho da Costa;
Aline Carvalho da Costa
Aline Carvalho da Costa in OpenAIRERobson Tramontina;
Carlos Eduardo Vaz Rossell;Robson Tramontina
Robson Tramontina in OpenAIREJaciane Lutz Ienczak;
Jaciane Lutz Ienczak
Jaciane Lutz Ienczak in OpenAIREFabio M. Squina;
Fabio M. Squina
Fabio M. Squina in OpenAIRERoberto Ruller;
Roberto Ruller
Roberto Ruller in OpenAIREpmid: 27498013
Here, it is shown three-step investigative procedures aiming to improve pentose-rich fermentations performance, involving a simple system for elevated mass production by Scheffersomyces stipitis (I), cellular recycle batch fermentations (CRBFs) at high cell density using two temperature strategies (fixed at 30°C; decreasing from 30 to 26°C) (II), and a short-term adaptation action seeking to acclimatize the microorganism in xylose rich-media (III). Cellular propagation provided 0.52gdrycellweightgRS(-1), resulting in an expressive value of 45.9gdrycellweightL(-1). The yeast robustness in CRBF was proven by effective ethanol production, reaching high xylose consumption (81%) and EtOH productivity (1.53gL(-1)h(-1)). Regarding the short-term adaptation, S. stipitis strengthened its robustness, as shown by a 6-fold increase in xylose reductase (XR) activity. The short fermentation time (20h for each batch) and the fermentation kinetics for ethanol production from xylose are quite promising.
Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.07.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource TechnologyArticle . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.07.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, SpainPublisher:Elsevier BV Publicly fundedFunded by:SFI | Hybrid Bio-Solar Reactors...SFI| Hybrid Bio-Solar Reactors for wastewater treatment and CO2 recyclingAuthors:Puig Broch, Sebastià;
Vassilev, Igor;Puig Broch, Sebastià
Puig Broch, Sebastià in OpenAIREDessì, Paolo;
Dessì, Paolo
Dessì, Paolo in OpenAIREKokko, Marika;
Kokko, Marika
Kokko, Marika in OpenAIREpmid: 35104648
Cathodic biofilms have an important role in CO2 bio-reduction to carboxylic acids and biofuels in microbial electrosynthesis (MES) cells. However, robust and resilient electroactive biofilms for an efficient CO2 conversion are difficult to achieve. In this review, the fundamentals of cathodic biofilm formation, including energy conservation, electron transfer and development of catalytic biofilms, are presented. In addition, strategies for improving cathodic biofilm formation, such as the selection of electrode and carrier materials, cell design and operational conditions, are described. The knowledge gaps are individuated, and possible solutions are proposed to achieve stable and productive biofilms in MES cathodes.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2022 . Peer-reviewedLicense: CC BYData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.126788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADUGiDocs – Universitat de GironaArticle . 2022 . Peer-reviewedLicense: CC BYData sources: DUGiDocs – Universitat de Gironaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.126788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:María C. Veiga;
Ánxela Fernández-Naveira;María C. Veiga
María C. Veiga in OpenAIREChristian Kennes;
Christian Kennes
Christian Kennes in OpenAIREpmid: 28803105
Some clostridia produce alcohols (ethanol, butanol, hexanol) from gases (CO, CO2, H2) and others from carbohydrates (e.g., glucose). C. carboxidivorans can metabolize both gases as well as glucose. However, its bioconversion profile on glucose had not been reported. It was observed that C. carboxidivorans does not follow a typical solventogenic stage when grown on glucose. Indeed, at pH 6.2, it produced first a broad range of acids (acetic, butyric, hexanoic, formic, and lactic acids), several of which are generally not found, under similar conditions, during gas fermentation. Medium acidification did not allow the conversion of fatty acids into solvents. Production of some alcohols from glucose was observed in C. carboxidivorans but at high pH rather than under acidic conditions, and the total concentration of those solvents was low. At high pH, formic acid was produced first and later converted to acetic acid, but organic acids were not metabolized at low pH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.07.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.07.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Peter Gschwind; Reinhard Kohlus; Thomas Senn; Jean Nepomuscene Ntihuga;pmid: 22940323
A gas lift-system with inserts (so-called Blenke cascade system) for continuous bio-ethanol fermentation was constructed. Gas introduced at the bottom of the column created toroidal vortices in the fluid cells between inserts, enhancing mixing and improving residence time behavior without stirring equipment being necessary. The parameters mash type, start-up strategy, yeast-recycle model and yeast separation were studied concerning the efficiency of the ethanol production. The best results obtained were for a filtered mash, a double saccharification principle (DSP), a batch start-up strategy, an activation-recycle model and a lamella settler connected in series with a small conventional gravitational settler for yeast cells separation. Using this system, the fermentation residence time was τ=4-5.5h, depending on substrate type. Eighty five percent of the yeast cells could be separated. High volumetric ethanol productivity (Q(p)=20.43g/Lh) and yield E(y)=98% were achieved. Continuous fermentation, yeast recycling and sedimentation were contamination-free processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: S. Venkata Mohan;Sulogna Chatterjee;
Sulogna Chatterjee;Sulogna Chatterjee
Sulogna Chatterjee in OpenAIREpmid: 34852279
Depletion of natural resources and negative impact of fossil fuels on environment are becoming a global concern. The concept of biorefinery is one of the alternative platforms for the production of biofuels and chemicals. Valorisation of biological resources through complete utilization of waste, reusing secondary products and generating energy to power the process are the key principles of biorefinery. Agricultural residues and biogenic municipal solid wastes are getting importance as a potential feedstock for the generation of bioproducts. This communication reviews and highlights the scope of yeast and fungi as a potent candidate for the synthesis of gamut of bioproducts in an integrated approach addressing sustainability and circular bioeconomy. It also provides a close view on importance of microbes in biorefinery, feedstock pretreatment strategies for renewable sugar production, cultivation systems and yeast and fungi based products. Integrated closed loop approach towards multiple product generation with zero waste discharge is also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Haifeng Lu; Guangming Zhang; Changjie Wang; Han Ting; Ruihan Zhao; Da Zhu;pmid: 34637910
High light is beneficial for purple non-sulfur bacteria (PNSB) growth. However, excessive light causes photoinhibition. In this novel study, flashing light was used to alleviate photoinhibition and promote biomass growth in PNSB wastewater treatment. Results showed that flashing light effectively increased biomass production. The highest biomass concentration (2688.8 mg/L) and chemical oxygen demand removal (in 177 μmol/m2/s-0.75 duty cycle-1000 Hz group) were 41.5% and 28.4% higher than that in the constant stress light group (same incident light). This group also increased biomass concentration by 21.3% and reduced energy consumption by 26.2% compared with the constant normal light group (same energy input). The shortened single light provision time of flashing light increased the relative electron transportation rate by 116.6%, avoiding photoinhibition, promoting energy utilisation, and enhancing substance synthesis. Flashing light can be used as a light regulation strategy to enhance biomass accumulation and reduce energy consumption in PNSB-based industries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu