- home
- Advanced Search
- Energy Research
- basic medicine
- Energy Research
- basic medicine
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Michael C. Duniway; Christopher Benson; Travis W. Nauman; Anna Knight; John B. Bradford; Seth M. Munson; Dana Witwicki; Carolyn Livensperger; Matthew Van Scoyoc; Terry T. Fisk; David Thoma; Mark E. Miller;doi: 10.1002/ecs2.4273
AbstractDrylands represent more than 41% of the global land surface and are at degradation risk due to land use and climate change. Developing strategies to mitigate degradation and restore drylands in the face of these threats requires an understanding of how drylands are shaped by not only soils and climate, but also geology and geomorphology. However, few studies have completed such a comprehensive analysis that relates spatial variation in plant communities to all aspects of the geologic–geomorphic–edaphic–plant–climate system. The focus of this study is the Colorado Plateau, a high‐elevation dryland in the southwestern United States, which is particularly sensitive to future change due to climate vulnerability and increasing land‐use pressure. Here, we examined 135 long‐term vegetation‐monitoring sites in three national parks and characterized connections between geology, geomorphology, soils, climate, and dryland plant communities. To first understand the geologic and geomorphic influences on soil formation and characteristics, we explore associations between soil pedons, bedrock geology, and geomorphology. Then, we characterize principal axes of variation in plant communities and ascertain controls and linkages between components of the edaphic–geomorphic system and plant community ordinations. Geologic and geomorphic substrate exerted controls on important properties of the soil profile, particularly depth, water‐holding capacity, rockiness, salinity, and fine sands. Ordination identified five distinct plant communities and three primary axes of variation, representing gradients of woody‐ to herbaceous‐dominated communities (Axis 1), saline scrublands to C3grasslands (Axis 2), and annual to perennial communities (Axis 3). Geology, geomorphology, and soil explained a large proportion of variation in Axis 1 (74%), while climate variables largely explained Axis 2 (68%), and Axis 3 was not well explained by the random forest models. The variables identified as most influential to each axis were, respectively: (1) soil depth; (2) aridity, lithology, and soil salinity; and (3) temperature and precipitation. We posit that Axis 3 represents a land degradation gradient due to historic grazing, likely exacerbated by dry conditions. Results provide a novel framework that links the geologic and geomorphic evolution of landscapes, with the distribution of soils and plant communities that can guide ecosystem management, exemplifying an approach applicable to drylands globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Sonia A. Hall; Gensuo Jia; Khishigbayar Jamiyansharav; Charles B. Yackulic; Seth M. Munson; Scott D. Wilson; William K. Lauenroth; Britta Tietjen; Michael C. Duniway; Daniel R. Schlaepfer; Daniel R. Schlaepfer; John B. Bradford;AbstractThe distribution of rainfed agriculture, which accounts for approximately ¾ of global croplands, is expected to respond to climate change and human population growth and these responses may be especially pronounced in water limited areas. Because the environmental conditions that support rainfed agriculture are determined by climate, weather, and soil conditions that affect overall and transient water availability, predicting this response has proven difficult, especially in temperate regions that support much of the world’s agriculture. Here, we show that suitability to support rainfed agriculture in temperate dryland climates can be effectively represented by just two daily environmental variables: moist soils with warm conditions increase suitability while extreme high temperatures decrease suitability. 21st century projections based on daily ecohydrological modeling of downscaled climate forecasts indicate overall increases in the area suitable for rainfed agriculture in temperate dryland regions, especially at high latitudes. The regional exception to this trend was Europe, where suitability in temperate dryland portions will decline substantially. These results clarify how rising temperatures interact with other key drivers of moisture availability to determine the sustainability of rainfed agriculture and help policymakers, resource managers, and the agriculture industry anticipate shifts in areas suitable for rainfed cultivation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-13165-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-13165-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley John B. Bradford; Caitlin M. Andrews; Marcos D. Robles; Lisa A. McCauley; Travis J. Woolley; Robert M. Marshall;doi: 10.1002/eap.2238
pmid: 33067874
AbstractIncreasing aridity is a challenge for forest managers and reducing stand density to minimize competition is a recognized strategy to mitigate drought impacts on growth. In many dry forests, the most widespread and common forest management programs currently being implemented focus on restoration of historical stand structures, primarily to minimize fire risk and enhance watershed function. The implications of these restoration projects for drought vulnerability are not well understood. Here, we examined how planned restoration treatments in the Four Forests Restoration Initiative, the largest forest restoration project in the United States, would alter landscape‐scale patterns of forest growth and drought vulnerability throughout the 21st century. Using drought–growth relationships developed within the landscape, we considered a suite of climate and treatment scenarios and estimated average forest growth and the proportion of years with extremely low growth as a measure of vulnerability to long‐term decline. Climatic shifts projected for this landscape include higher temperatures and shifting seasonal precipitation that promotes lower soil moisture availability in the early growing season and greater hot‐dry stress, conditions negatively associated with tree growth. However, drought severity and the magnitude of future growth declines were moderated by the thinning treatments. Compared to historical conditions, proportional growth in mid‐century declines by ~40% if thinning ceases or continues at the status quo pace. By comparison, proportional growth declines by only 20% if the Four Forest Restoration Initiative treatments are fully implemented, and <10% if stands are thinned even more intensively than currently planned. Furthermore, restoration treatments resulted in dramatically fewer years with extremely low growth in the future, a recognized precursor to forest decline and eventual tree mortality. Benefits from density reduction for mitigating drought‐induced growth declines are more apparent in mid‐century and under RCP4.5 than under RCP8.5 at the end of the century. Future climate is inherently uncertain, and our results only reflect the climate projections from the representative suite of models examined. Nevertheless, these results indicate that forest restoration projects designed for other objectives also have substantial benefits for minimizing future drought vulnerability in dry forests and provide additional incentive to accelerate the pace of restoration.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Michael C. Duniway; Christopher Benson; Travis W. Nauman; Anna Knight; John B. Bradford; Seth M. Munson; Dana Witwicki; Carolyn Livensperger; Matthew Van Scoyoc; Terry T. Fisk; David Thoma; Mark E. Miller;doi: 10.1002/ecs2.4273
AbstractDrylands represent more than 41% of the global land surface and are at degradation risk due to land use and climate change. Developing strategies to mitigate degradation and restore drylands in the face of these threats requires an understanding of how drylands are shaped by not only soils and climate, but also geology and geomorphology. However, few studies have completed such a comprehensive analysis that relates spatial variation in plant communities to all aspects of the geologic–geomorphic–edaphic–plant–climate system. The focus of this study is the Colorado Plateau, a high‐elevation dryland in the southwestern United States, which is particularly sensitive to future change due to climate vulnerability and increasing land‐use pressure. Here, we examined 135 long‐term vegetation‐monitoring sites in three national parks and characterized connections between geology, geomorphology, soils, climate, and dryland plant communities. To first understand the geologic and geomorphic influences on soil formation and characteristics, we explore associations between soil pedons, bedrock geology, and geomorphology. Then, we characterize principal axes of variation in plant communities and ascertain controls and linkages between components of the edaphic–geomorphic system and plant community ordinations. Geologic and geomorphic substrate exerted controls on important properties of the soil profile, particularly depth, water‐holding capacity, rockiness, salinity, and fine sands. Ordination identified five distinct plant communities and three primary axes of variation, representing gradients of woody‐ to herbaceous‐dominated communities (Axis 1), saline scrublands to C3grasslands (Axis 2), and annual to perennial communities (Axis 3). Geology, geomorphology, and soil explained a large proportion of variation in Axis 1 (74%), while climate variables largely explained Axis 2 (68%), and Axis 3 was not well explained by the random forest models. The variables identified as most influential to each axis were, respectively: (1) soil depth; (2) aridity, lithology, and soil salinity; and (3) temperature and precipitation. We posit that Axis 3 represents a land degradation gradient due to historic grazing, likely exacerbated by dry conditions. Results provide a novel framework that links the geologic and geomorphic evolution of landscapes, with the distribution of soils and plant communities that can guide ecosystem management, exemplifying an approach applicable to drylands globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Sonia A. Hall; Gensuo Jia; Khishigbayar Jamiyansharav; Charles B. Yackulic; Seth M. Munson; Scott D. Wilson; William K. Lauenroth; Britta Tietjen; Michael C. Duniway; Daniel R. Schlaepfer; Daniel R. Schlaepfer; John B. Bradford;AbstractThe distribution of rainfed agriculture, which accounts for approximately ¾ of global croplands, is expected to respond to climate change and human population growth and these responses may be especially pronounced in water limited areas. Because the environmental conditions that support rainfed agriculture are determined by climate, weather, and soil conditions that affect overall and transient water availability, predicting this response has proven difficult, especially in temperate regions that support much of the world’s agriculture. Here, we show that suitability to support rainfed agriculture in temperate dryland climates can be effectively represented by just two daily environmental variables: moist soils with warm conditions increase suitability while extreme high temperatures decrease suitability. 21st century projections based on daily ecohydrological modeling of downscaled climate forecasts indicate overall increases in the area suitable for rainfed agriculture in temperate dryland regions, especially at high latitudes. The regional exception to this trend was Europe, where suitability in temperate dryland portions will decline substantially. These results clarify how rising temperatures interact with other key drivers of moisture availability to determine the sustainability of rainfed agriculture and help policymakers, resource managers, and the agriculture industry anticipate shifts in areas suitable for rainfed cultivation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-13165-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-13165-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley John B. Bradford; Caitlin M. Andrews; Marcos D. Robles; Lisa A. McCauley; Travis J. Woolley; Robert M. Marshall;doi: 10.1002/eap.2238
pmid: 33067874
AbstractIncreasing aridity is a challenge for forest managers and reducing stand density to minimize competition is a recognized strategy to mitigate drought impacts on growth. In many dry forests, the most widespread and common forest management programs currently being implemented focus on restoration of historical stand structures, primarily to minimize fire risk and enhance watershed function. The implications of these restoration projects for drought vulnerability are not well understood. Here, we examined how planned restoration treatments in the Four Forests Restoration Initiative, the largest forest restoration project in the United States, would alter landscape‐scale patterns of forest growth and drought vulnerability throughout the 21st century. Using drought–growth relationships developed within the landscape, we considered a suite of climate and treatment scenarios and estimated average forest growth and the proportion of years with extremely low growth as a measure of vulnerability to long‐term decline. Climatic shifts projected for this landscape include higher temperatures and shifting seasonal precipitation that promotes lower soil moisture availability in the early growing season and greater hot‐dry stress, conditions negatively associated with tree growth. However, drought severity and the magnitude of future growth declines were moderated by the thinning treatments. Compared to historical conditions, proportional growth in mid‐century declines by ~40% if thinning ceases or continues at the status quo pace. By comparison, proportional growth declines by only 20% if the Four Forest Restoration Initiative treatments are fully implemented, and <10% if stands are thinned even more intensively than currently planned. Furthermore, restoration treatments resulted in dramatically fewer years with extremely low growth in the future, a recognized precursor to forest decline and eventual tree mortality. Benefits from density reduction for mitigating drought‐induced growth declines are more apparent in mid‐century and under RCP4.5 than under RCP8.5 at the end of the century. Future climate is inherently uncertain, and our results only reflect the climate projections from the representative suite of models examined. Nevertheless, these results indicate that forest restoration projects designed for other objectives also have substantial benefits for minimizing future drought vulnerability in dry forests and provide additional incentive to accelerate the pace of restoration.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu