- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOSDG [Beta]
Country
Source
- Energy Research
- basic medicine
- Energy Research
- basic medicine
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, United Kingdom, Australia, SpainPublisher:Oxford University Press (OUP) Authors: Stephan Lewandowsky; Corey J. A. Bradshaw; David R. Vieites; Salvador Herrando-Pérez; +1 AuthorsStephan Lewandowsky; Corey J. A. Bradshaw; David R. Vieites; Salvador Herrando-Pérez; Salvador Herrando-Pérez;The scientific evidence for anthropogenic climate change is empirically settled, but communicating it to nonscientific audiences remains challenging. To be explicit about the state of knowledge on climate science, the Intergovernmental Panel on Climate Change (IPCC) has adopted a vocabulary that ranks climate findings through certainty-calibrated qualifiers of confidence and likelihood. In this article, we quantified the occurrence of knowns and unknowns about "The Physical Science Basis" of the IPCC's Fifth Assessment Report by counting the frequency of calibrated qualifiers. We found that the tone of the IPCC's probabilistic language is remarkably conservative (mean confidence is medium, and mean likelihood is 66%-100% or 0-33%), and emanates from the IPCC recommendations themselves, complexity of climate research, and exposure to politically motivated debates. Leveraging communication of uncertainty with overwhelming scientific consensus about anthropogenic climate change should be one element of a wider reform, whereby the creation of an IPCC outreach working group could enhance the transmission of climate science to the panel's audiences. Supported by British Ecological Society research grant no. 4496–5470 to SH-P; Spanish Ministry of Economy, Industry and Competitiveness project no. CGL2013–40924-P to DRV; and Royal Society, Psychonomic Society, and Australian Research Council discovery project no. DP160103596 to SL.
BioScience arrow_drop_down BioScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biz004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 15 Powered bymore_vert BioScience arrow_drop_down BioScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biz004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Proceedings of the National Academy of Sciences Brook, Barry W; Bradshaw, Corey J. A; Cooper, Alan; Johnson, Christopher N; Worthy, Trevor H; Bird, Michael; Gillespie, Richard; Roberts, Richard G;The most enduring and high-profile scientific debate in Australian prehistory is that surrounding the loss of more than 50 species of endemic, large-bodied vertebrates (megafauna) and the timing of these extinctions (1). Wroe et al. (2) present a personal perspective on some of the available literature to reject the scenario of rapid, continent-wide losses, and downplay any role for human agency. They contend that different species of megafauna went extinct progressively during the Middle and Late Pleistocene, with many “disappearing” long before human hunters arrived, leaving climate change as the alternative explanation. However, these conclusions rely on a biased selection of data and disregard several underlying geochronological …
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1309226110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1309226110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, United KingdomPublisher:The Royal Society Johnson, Chris N; Alroy, John; Beeton, Nicholas; Bird, Michael I; Brook, Barry W; Cooper, Alan; Gillespie, Richard; Herrando-Péreza, Salvador; Jacobs, Zenobia; Miller, Gifford H; Prideaux, Gavin J; Roberts, Richard G; Rodríguez-Reya, Marta; Saltréa, Frédérik; Turney, Christian; Bradshaw, Corey J. A;During the Pleistocene, Australia and New Guinea supported a rich assemblage of large vertebrates. Why these animals disappeared has been debated for more than a century and remains controversial. Previous synthetic reviews of this problem have typically focused heavily on particular types of evidence, such as the dating of extinction and human arrival, and have frequently ignored uncertainties and biases that can lead to misinterpretation of this evidence. Here, we review diverse evidence bearing on this issue and conclude that, although many knowledge gaps remain, multiple independent lines of evidence point to direct human impact as the most likely cause of extinction.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/102885Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2015.2399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/102885Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2015.2399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100015Authors: Giovanni Strona; Corey J. A. Bradshaw;AbstractClimate change and human activity are dooming species at an unprecedented rate via a plethora of direct and indirect, often synergic, mechanisms. Among these, primary extinctions driven by environmental change could be just the tip of an enormous extinction iceberg. As our understanding of the importance of ecological interactions in shaping ecosystem identity advances, it is becoming clearer how the disappearance of consumers following the depletion of their resources — a process known as ‘co-extinction’ — is more likely the major driver of biodiversity loss. Although the general relevance of co-extinctions is supported by a sound and robust theoretical background, the challenges in obtaining empirical information about ongoing (and past) co-extinction events complicate the assessment of their relative contributions to the rapid decline of species diversity even in well-known systems, let alone at the global scale. By subjecting a large set of virtual Earths to different trajectories of extreme environmental change (global heating and cooling), and by tracking species loss up to the complete annihilation of all life either accounting or not for co-extinction processes, we show how ecological dependencies amplify the direct effects of environmental change on the collapse of planetary diversity by up to ten times.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35068-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35068-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Peter N Le Souëf; Chitra M Saraswati; Melinda Judge; Corey JA Bradshaw;doi: 10.1111/jpc.15822
pmid: 34792242
BackgroundDire forecasts predict that an increasingly hostile environment globally will increase the threats to human health. Infants and young children are especially at risk because children are particularly vulnerable to climate‐related stressors. The childhood diseases most affected, the breadth and magnitude of future health problems and the time frame over which these problems will manifest remain largely unknown.ObjectivesTo review the possibility that spacially explicit analyses can be used to determine how climate change has affected children's health to date and whether these analyses can be used for future projections.MethodsAs an example of whether these objectives can be achieved, all available Australian environmental and health databases were reviewed.ResultsEnvironmental and health data in Australia have been collected for up to 30 years for the same spatial areas at ‘Statistical Area level 1’ (SA1) scale. SA1s are defined as having a population of between 200 and 800 people and collectively they cover the whole of Australia without gaps or overlap. Although the SA1 environmental and health data have been collected separately, they can be merged to allow detailed statistical analyses that can determine how climate change has affected the health of children.ConclusionsThe availability of environmental and health datasets that share the same precise spatial coordinates provides a pathway whereby past and emerging effects on child health can be measured and predicted into the future. Given that the future health and well‐being of children is one of society's greatest concerns, this information is urgently needed.
Journal of Paediatri... arrow_drop_down Journal of Paediatrics and Child HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpc.15822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Paediatri... arrow_drop_down Journal of Paediatrics and Child HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpc.15822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100015Corey J. A. Bradshaw; Corey J. A. Bradshaw; Paul R. Ehrlich; Andrew Beattie; Gerardo Ceballos; Eileen Crist; Joan Diamond; Rodolfo Dirzo; Anne H. Ehrlich; John Harte; John Harte; Mary Ellen Harte; Graham H. Pyke; Peter H. Raven; William J. Ripple; Frédérik Saltré; Frédérik Saltré; Christine Turnbull; Mathis Wackernagel; Daniel T. Blumstein; Daniel T. Blumstein;Frontiers in Conserv... arrow_drop_down Frontiers in Conservation ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fcosc.2021.700869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Conserv... arrow_drop_down Frontiers in Conservation ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fcosc.2021.700869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Australia, Singapore, AustraliaPublisher:Elsevier BV Hugh T. W. Tan; Corey J. A. Bradshaw; Corey J. A. Bradshaw; Xingli Giam; Navjot S. Sodhi; Navjot S. Sodhi;handle: 2440/61448
Rapid land-use and climate changes are projected to cause broad-scale global land-cover transformation that will increase species extinction rates. We assessed the exposure of globally threatened plant biodiversity to future habitat loss over the first half of this century by testing country-level associations between threatened plant species richness and future habitat loss owing to land-use and climate changes, separately. In countries overlapping Biodiversity Hotspots, plant species endangerment increases with climate change-driven habitat loss. This association suggests that many currently threatened plant species will become extinct owing to anthropogenic climate change in the absence of potentially mitigating factors such as natural and assisted range shift, and physiological and genetic adaptations. Countries rich in threatened species, which are also projected to have relatively high total future habitat loss, are concentrated around the equator. Because poverty and poor governance can compromise conservation, we considered the economic condition and quality of governance with the degree of plant species endangerment and future habitat loss to prioritize countries based on conservation need. We identified Angola, Cuba, Democratic Republic of Congo, Ethiopia, Kenya, Laos, Madagascar, Myanmar, Nepal, Tajikistan, and Tanzania as the countries in greatest need of conservation assistance. For conservation endeavors to be effective, the conservation capacity of these high-need countries needs to be improved by assisting political stability and economic sustainability. We make policy recommendations that aim to mitigate climate change, promote plant species conservation, and improve the economic conditions and quality of governance in countries with high conservation need.
Biological Conservat... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2010.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2010.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Liu, J.; Zhang, X.; Song, F.; Zhou, S.; Cadotte, M.; Bradshaw, C.;Many community experiments have shown a positive relationship between plant biodiversity and community productivity, with biodiversity measured in multiple ways based on taxonomy, function, and phylogeny. Whether these different measures of biodiversity and their interactions explain variation in productivity in natural assemblages has rarely been tested. In a removal experiment using natural alpine assemblages in the Tibetan Plateau, we manipulated species richness and functional diversity to examine how different measures of biodiversity predict aboveground biomass production. We combined different biodiversity measures (functional, phylogenetic, richness, evenness) in generalized linear models to determine which combinations provided the most parsimonious explanations of variation in biomass production. Although multivariate functional diversity indices alone consistently explained more variation in productivity than other single measures, phylogenetic diversity and plant height represented the most parsimonious combination. In natural assemblages, single metrics alone cannot fully explain ecosystem function. Instead, a combination of phylogenetic diversity and traits with weak or no phylogenetic signal is required to explain the effects of biodiversity loss on ecosystem function.
Ecology arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-1034.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-1034.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Wiley Funded by:ARC | Systems modelling for syn...ARC| Systems modelling for synergistic ecological-climate dynamicsAuthors: Bradshaw, C.; Brook, B.;doi: 10.1002/app5.135
handle: 2440/100071
AbstractAustralia's high per capita emissions rates makes it is a major emitter of anthropogenic greenhouse gases, but its low intrinsic growth rate means that future increases in population size will be dictated by net overseas immigration. We constructed matrix models and projected the population to 2100 under six different immigration scenarios. A constant 1 per cent proportional immigration scenario would result in 53 million people by 2100, producing 30.7 Gt CO2‐e over that interval. Zero net immigration would achieve approximate population stability by mid‐century and produce 24.1 Gt CO2‐e. Achieving a 27 per cent reduction in annual emissions by 2030 would require a 1.5‐ to 2.0‐fold reduction in per‐capita emissions; an 80 per cent reduction by 2050 would require a 5.8‐ to 10.2‐fold reduction. Australia's capacity to limit its future emissions will therefore depend primarily on a massive technological transformation of its energy sector, but business‐as‐usual immigration rates will make achieving meaningful mid‐century targets more difficult.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Asia & the Pacific Policy StudiesArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/app5.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Asia & the Pacific Policy StudiesArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/app5.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, DenmarkPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | Australian Laureate Fello..., ARC | Using ancient DNA to unde..., ARC | Discovery Projects - Gran... +4 projectsARC| Australian Laureate Fellowships - Grant ID: FL100100195 ,ARC| Using ancient DNA to understand Australia's past and manage its future ,ARC| Discovery Projects - Grant ID: DP140104233 ,ARC| Australian Laureate Fellowships - Grant ID: FL140100260 ,ARC| Using ancient DNA to investigate the environmental impacts of climate change and humans through time ,ARC| Future Fellowships - Grant ID: FT110100306 ,ARC| Discovery Projects - Grant ID: DP130103842Alejandra Gasco; Rodolfo Salas-Gismondi; Rodolfo Salas-Gismondi; Adolfo Gil; Daniel Loponte; Alan Cooper; Alan Cooper; Francisco Juan Prevosti; Jessica L. Metcalf; Jessica L. Metcalf; Ludovic Orlando; Luis Alberto Borrero; Jeremy J. Austin; Pablo Fernandez; Víctor Durán; Mariana E. De Nigris; Kevin L. Seymour; Clara Otaola; Corey J. A. Bradshaw; Sarah C Bray; Sarah C Bray; Matías E. Medina; Jane V. Wheeler; Rafael Sebastián Paunero; Fabiana María Martin; Julia T. Vilstrup; Teresa Civalero; Ross Barnett; Ross Barnett; Chris S. M. Turney;Patagonian megafaunal extinctions reveal synergistic roles of climate change and human impacts.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/11343/287822Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 28 Powered bymore_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/11343/287822Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, United Kingdom, Australia, SpainPublisher:Oxford University Press (OUP) Authors: Stephan Lewandowsky; Corey J. A. Bradshaw; David R. Vieites; Salvador Herrando-Pérez; +1 AuthorsStephan Lewandowsky; Corey J. A. Bradshaw; David R. Vieites; Salvador Herrando-Pérez; Salvador Herrando-Pérez;The scientific evidence for anthropogenic climate change is empirically settled, but communicating it to nonscientific audiences remains challenging. To be explicit about the state of knowledge on climate science, the Intergovernmental Panel on Climate Change (IPCC) has adopted a vocabulary that ranks climate findings through certainty-calibrated qualifiers of confidence and likelihood. In this article, we quantified the occurrence of knowns and unknowns about "The Physical Science Basis" of the IPCC's Fifth Assessment Report by counting the frequency of calibrated qualifiers. We found that the tone of the IPCC's probabilistic language is remarkably conservative (mean confidence is medium, and mean likelihood is 66%-100% or 0-33%), and emanates from the IPCC recommendations themselves, complexity of climate research, and exposure to politically motivated debates. Leveraging communication of uncertainty with overwhelming scientific consensus about anthropogenic climate change should be one element of a wider reform, whereby the creation of an IPCC outreach working group could enhance the transmission of climate science to the panel's audiences. Supported by British Ecological Society research grant no. 4496–5470 to SH-P; Spanish Ministry of Economy, Industry and Competitiveness project no. CGL2013–40924-P to DRV; and Royal Society, Psychonomic Society, and Australian Research Council discovery project no. DP160103596 to SL.
BioScience arrow_drop_down BioScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biz004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 15 Powered bymore_vert BioScience arrow_drop_down BioScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biz004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Proceedings of the National Academy of Sciences Brook, Barry W; Bradshaw, Corey J. A; Cooper, Alan; Johnson, Christopher N; Worthy, Trevor H; Bird, Michael; Gillespie, Richard; Roberts, Richard G;The most enduring and high-profile scientific debate in Australian prehistory is that surrounding the loss of more than 50 species of endemic, large-bodied vertebrates (megafauna) and the timing of these extinctions (1). Wroe et al. (2) present a personal perspective on some of the available literature to reject the scenario of rapid, continent-wide losses, and downplay any role for human agency. They contend that different species of megafauna went extinct progressively during the Middle and Late Pleistocene, with many “disappearing” long before human hunters arrived, leaving climate change as the alternative explanation. However, these conclusions rely on a biased selection of data and disregard several underlying geochronological …
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1309226110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1309226110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, United KingdomPublisher:The Royal Society Johnson, Chris N; Alroy, John; Beeton, Nicholas; Bird, Michael I; Brook, Barry W; Cooper, Alan; Gillespie, Richard; Herrando-Péreza, Salvador; Jacobs, Zenobia; Miller, Gifford H; Prideaux, Gavin J; Roberts, Richard G; Rodríguez-Reya, Marta; Saltréa, Frédérik; Turney, Christian; Bradshaw, Corey J. A;During the Pleistocene, Australia and New Guinea supported a rich assemblage of large vertebrates. Why these animals disappeared has been debated for more than a century and remains controversial. Previous synthetic reviews of this problem have typically focused heavily on particular types of evidence, such as the dating of extinction and human arrival, and have frequently ignored uncertainties and biases that can lead to misinterpretation of this evidence. Here, we review diverse evidence bearing on this issue and conclude that, although many knowledge gaps remain, multiple independent lines of evidence point to direct human impact as the most likely cause of extinction.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/102885Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2015.2399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/102885Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2015.2399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100015Authors: Giovanni Strona; Corey J. A. Bradshaw;AbstractClimate change and human activity are dooming species at an unprecedented rate via a plethora of direct and indirect, often synergic, mechanisms. Among these, primary extinctions driven by environmental change could be just the tip of an enormous extinction iceberg. As our understanding of the importance of ecological interactions in shaping ecosystem identity advances, it is becoming clearer how the disappearance of consumers following the depletion of their resources — a process known as ‘co-extinction’ — is more likely the major driver of biodiversity loss. Although the general relevance of co-extinctions is supported by a sound and robust theoretical background, the challenges in obtaining empirical information about ongoing (and past) co-extinction events complicate the assessment of their relative contributions to the rapid decline of species diversity even in well-known systems, let alone at the global scale. By subjecting a large set of virtual Earths to different trajectories of extreme environmental change (global heating and cooling), and by tracking species loss up to the complete annihilation of all life either accounting or not for co-extinction processes, we show how ecological dependencies amplify the direct effects of environmental change on the collapse of planetary diversity by up to ten times.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35068-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-35068-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Peter N Le Souëf; Chitra M Saraswati; Melinda Judge; Corey JA Bradshaw;doi: 10.1111/jpc.15822
pmid: 34792242
BackgroundDire forecasts predict that an increasingly hostile environment globally will increase the threats to human health. Infants and young children are especially at risk because children are particularly vulnerable to climate‐related stressors. The childhood diseases most affected, the breadth and magnitude of future health problems and the time frame over which these problems will manifest remain largely unknown.ObjectivesTo review the possibility that spacially explicit analyses can be used to determine how climate change has affected children's health to date and whether these analyses can be used for future projections.MethodsAs an example of whether these objectives can be achieved, all available Australian environmental and health databases were reviewed.ResultsEnvironmental and health data in Australia have been collected for up to 30 years for the same spatial areas at ‘Statistical Area level 1’ (SA1) scale. SA1s are defined as having a population of between 200 and 800 people and collectively they cover the whole of Australia without gaps or overlap. Although the SA1 environmental and health data have been collected separately, they can be merged to allow detailed statistical analyses that can determine how climate change has affected the health of children.ConclusionsThe availability of environmental and health datasets that share the same precise spatial coordinates provides a pathway whereby past and emerging effects on child health can be measured and predicted into the future. Given that the future health and well‐being of children is one of society's greatest concerns, this information is urgently needed.
Journal of Paediatri... arrow_drop_down Journal of Paediatrics and Child HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpc.15822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Paediatri... arrow_drop_down Journal of Paediatrics and Child HealthArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jpc.15822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Funded by:ARC | ARC Centres of Excellence...ARC| ARC Centres of Excellences - Grant ID: CE170100015Corey J. A. Bradshaw; Corey J. A. Bradshaw; Paul R. Ehrlich; Andrew Beattie; Gerardo Ceballos; Eileen Crist; Joan Diamond; Rodolfo Dirzo; Anne H. Ehrlich; John Harte; John Harte; Mary Ellen Harte; Graham H. Pyke; Peter H. Raven; William J. Ripple; Frédérik Saltré; Frédérik Saltré; Christine Turnbull; Mathis Wackernagel; Daniel T. Blumstein; Daniel T. Blumstein;Frontiers in Conserv... arrow_drop_down Frontiers in Conservation ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fcosc.2021.700869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Conserv... arrow_drop_down Frontiers in Conservation ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fcosc.2021.700869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Australia, Singapore, AustraliaPublisher:Elsevier BV Hugh T. W. Tan; Corey J. A. Bradshaw; Corey J. A. Bradshaw; Xingli Giam; Navjot S. Sodhi; Navjot S. Sodhi;handle: 2440/61448
Rapid land-use and climate changes are projected to cause broad-scale global land-cover transformation that will increase species extinction rates. We assessed the exposure of globally threatened plant biodiversity to future habitat loss over the first half of this century by testing country-level associations between threatened plant species richness and future habitat loss owing to land-use and climate changes, separately. In countries overlapping Biodiversity Hotspots, plant species endangerment increases with climate change-driven habitat loss. This association suggests that many currently threatened plant species will become extinct owing to anthropogenic climate change in the absence of potentially mitigating factors such as natural and assisted range shift, and physiological and genetic adaptations. Countries rich in threatened species, which are also projected to have relatively high total future habitat loss, are concentrated around the equator. Because poverty and poor governance can compromise conservation, we considered the economic condition and quality of governance with the degree of plant species endangerment and future habitat loss to prioritize countries based on conservation need. We identified Angola, Cuba, Democratic Republic of Congo, Ethiopia, Kenya, Laos, Madagascar, Myanmar, Nepal, Tajikistan, and Tanzania as the countries in greatest need of conservation assistance. For conservation endeavors to be effective, the conservation capacity of these high-need countries needs to be improved by assisting political stability and economic sustainability. We make policy recommendations that aim to mitigate climate change, promote plant species conservation, and improve the economic conditions and quality of governance in countries with high conservation need.
Biological Conservat... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2010.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2010.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Liu, J.; Zhang, X.; Song, F.; Zhou, S.; Cadotte, M.; Bradshaw, C.;Many community experiments have shown a positive relationship between plant biodiversity and community productivity, with biodiversity measured in multiple ways based on taxonomy, function, and phylogeny. Whether these different measures of biodiversity and their interactions explain variation in productivity in natural assemblages has rarely been tested. In a removal experiment using natural alpine assemblages in the Tibetan Plateau, we manipulated species richness and functional diversity to examine how different measures of biodiversity predict aboveground biomass production. We combined different biodiversity measures (functional, phylogenetic, richness, evenness) in generalized linear models to determine which combinations provided the most parsimonious explanations of variation in biomass production. Although multivariate functional diversity indices alone consistently explained more variation in productivity than other single measures, phylogenetic diversity and plant height represented the most parsimonious combination. In natural assemblages, single metrics alone cannot fully explain ecosystem function. Instead, a combination of phylogenetic diversity and traits with weak or no phylogenetic signal is required to explain the effects of biodiversity loss on ecosystem function.
Ecology arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-1034.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-1034.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Wiley Funded by:ARC | Systems modelling for syn...ARC| Systems modelling for synergistic ecological-climate dynamicsAuthors: Bradshaw, C.; Brook, B.;doi: 10.1002/app5.135
handle: 2440/100071
AbstractAustralia's high per capita emissions rates makes it is a major emitter of anthropogenic greenhouse gases, but its low intrinsic growth rate means that future increases in population size will be dictated by net overseas immigration. We constructed matrix models and projected the population to 2100 under six different immigration scenarios. A constant 1 per cent proportional immigration scenario would result in 53 million people by 2100, producing 30.7 Gt CO2‐e over that interval. Zero net immigration would achieve approximate population stability by mid‐century and produce 24.1 Gt CO2‐e. Achieving a 27 per cent reduction in annual emissions by 2030 would require a 1.5‐ to 2.0‐fold reduction in per‐capita emissions; an 80 per cent reduction by 2050 would require a 5.8‐ to 10.2‐fold reduction. Australia's capacity to limit its future emissions will therefore depend primarily on a massive technological transformation of its energy sector, but business‐as‐usual immigration rates will make achieving meaningful mid‐century targets more difficult.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Asia & the Pacific Policy StudiesArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/app5.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Asia & the Pacific Policy StudiesArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/app5.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, DenmarkPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | Australian Laureate Fello..., ARC | Using ancient DNA to unde..., ARC | Discovery Projects - Gran... +4 projectsARC| Australian Laureate Fellowships - Grant ID: FL100100195 ,ARC| Using ancient DNA to understand Australia's past and manage its future ,ARC| Discovery Projects - Grant ID: DP140104233 ,ARC| Australian Laureate Fellowships - Grant ID: FL140100260 ,ARC| Using ancient DNA to investigate the environmental impacts of climate change and humans through time ,ARC| Future Fellowships - Grant ID: FT110100306 ,ARC| Discovery Projects - Grant ID: DP130103842Alejandra Gasco; Rodolfo Salas-Gismondi; Rodolfo Salas-Gismondi; Adolfo Gil; Daniel Loponte; Alan Cooper; Alan Cooper; Francisco Juan Prevosti; Jessica L. Metcalf; Jessica L. Metcalf; Ludovic Orlando; Luis Alberto Borrero; Jeremy J. Austin; Pablo Fernandez; Víctor Durán; Mariana E. De Nigris; Kevin L. Seymour; Clara Otaola; Corey J. A. Bradshaw; Sarah C Bray; Sarah C Bray; Matías E. Medina; Jane V. Wheeler; Rafael Sebastián Paunero; Fabiana María Martin; Julia T. Vilstrup; Teresa Civalero; Ross Barnett; Ross Barnett; Chris S. M. Turney;Patagonian megafaunal extinctions reveal synergistic roles of climate change and human impacts.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/11343/287822Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 28 Powered bymore_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/11343/287822Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu