- home
- Advanced Search
- Energy Research
- health sciences
- Energy Research
- health sciences
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Beatrice Crona; Beatrice Crona; Bert Scholtens; Bert Scholtens; Emmy Wassénius; Emmy Wassénius; Jan Bebbington; Jean-Baptiste Jouffray; Jean-Baptiste Jouffray;pmid: 31616789
pmc: PMC6774725
Loan covenants, stock exchange listing rules, and shareholder activism can redirect capital toward better seafood practices
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2019License: CC BY NCFull-Text: http://hdl.handle.net/10023/18725Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aax3324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2019License: CC BY NCFull-Text: http://hdl.handle.net/10023/18725Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aax3324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Carl Folke; Carl Folke; Albert V. Norström; Stephen R. Carpenter; Magnus Nyström; Örjan Bodin; Victor Galaz; Victor Galaz; Beatrice Crona; Beatrice Crona; P. Søgaard Jørgensen; P. Søgaard Jørgensen; Jean-Baptiste Jouffray; Jean-Baptiste Jouffray;pmid: 31695208
Much of the Earth's biosphere has been appropriated for the production of harvestable biomass in the form of food, fuel and fibre. Here we show that the simplification and intensification of these systems and their growing connection to international markets has yielded a global production ecosystem that is homogenous, highly connected and characterized by weakened internal feedbacks. We argue that these features converge to yield high and predictable supplies of biomass in the short term, but create conditions for novel and pervasive risks to emerge and interact in the longer term. Steering the global production ecosystem towards a sustainable trajectory will require the redirection of finance, increased transparency and traceability in supply chains, and the participation of a multitude of players, including integrated 'keystone actors' such as multinational corporations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1712-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 231 citations 231 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1712-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Eylem, Elma; Martin, Gullström; Saleh A S, Yahya; Jean-Baptiste, Jouffray; Holly K, East; Magnus, Nyström;pmid: 36549237
We explored the extent of post-bleaching impacts, caused by the 2014-2016 El Niño Southern Oscillation (ENSO) event, on benthic community structure (BCS) and herbivores (fish and sea urchins) on seven fringing reefs, with differing protection levels, in Zanzibar, Tanzania. Results showed post-bleaching alterations in BCS, with up to 68 % coral mortality and up to 48 % increase in turf algae cover in all reef sites. Herbivorous fish biomass increased after bleaching and was correlated with turf algae increase in some reefs, while the opposite was found for sea urchin densities, with significant declines and complete absence. The severity of the impact varied across individual reefs, with larger impact on the protected reefs, compared to the unprotected reefs. Our study provides a highly relevant reference point to guide future research and contributes to our understanding of post-bleaching impacts, trends, and evaluation of coral reef health and resilience in the region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2022.114479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2022.114479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, Fiji, AustraliaPublisher:Frontiers Media SA Amanda K. Ford; Amanda K. Ford; Amanda K. Ford; Amanda K. Ford; Jean-Baptiste Jouffray; Jean-Baptiste Jouffray; Albert V. Norström; Bradley R. Moore; Bradley R. Moore; Bradley R. Moore; Maggy M. Nugues; Maggy M. Nugues; Gareth J. Williams; Sonia Bejarano; Franck Magron; Christian Wild; Sebastian C. A. Ferse; Sebastian C. A. Ferse;Human activities are changing ecosystems at an unprecedented rate, yet large-scale studies into how local human impacts alter natural systems and interact with other aspects of global change are still lacking. Here we provide empirical evidence that local human impacts fundamentally alter relationships between ecological communities and environmental drivers. Using tropical coral reefs as a study system, we investigated the influence of contrasting levels of local human impact using a spatially extensive dataset spanning 62 outer reefs around inhabited Pacific islands. We tested how local human impacts (low versus high determined using a threshold of 25 people km−2 reef) affected benthic community (i) structure, and (ii) relationships with environmental predictors using pre-defined models and model selection tools. Data on reef depth, benthic assemblages, and herbivorous fish communities were collected from field surveys. Additional data on thermal stress, storm exposure, and market gravity (a function of human population size and reef accessibility) were extracted from public repositories. Findings revealed that reefs subject to high local human impact were characterised by relatively more turf algae (>10% higher mean absolute coverage) and lower live coral cover (9% less mean absolute coverage) than reefs subject to low local human impact, but had similar macroalgal cover and coral morphological composition. Models based on spatio-physical predictors were significantly more accurate in explaining the variation of benthic assemblages at sites with low (mean adjusted-R2 = 0.35) rather than high local human impact, where relationships became much weaker (mean adjusted-R2 = 0.10). Model selection procedures also identified a distinct shift in the relative importance of different herbivorous fish functional groups in explaining benthic communities depending on the local human impact level. These results demonstrate that local human impacts alter natural systems and indicate that projecting climate change impacts may be particularly challenging at reefs close to higher human populations, where dependency and pressure on ecosystem services are highest.
Frontiers in Marine ... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of South Pacific: USP Electronic Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.571115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of South Pacific: USP Electronic Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.571115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Beatrice Crona; Beatrice Crona; Bert Scholtens; Bert Scholtens; Emmy Wassénius; Emmy Wassénius; Jan Bebbington; Jean-Baptiste Jouffray; Jean-Baptiste Jouffray;pmid: 31616789
pmc: PMC6774725
Loan covenants, stock exchange listing rules, and shareholder activism can redirect capital toward better seafood practices
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2019License: CC BY NCFull-Text: http://hdl.handle.net/10023/18725Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aax3324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2019License: CC BY NCFull-Text: http://hdl.handle.net/10023/18725Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aax3324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Carl Folke; Carl Folke; Albert V. Norström; Stephen R. Carpenter; Magnus Nyström; Örjan Bodin; Victor Galaz; Victor Galaz; Beatrice Crona; Beatrice Crona; P. Søgaard Jørgensen; P. Søgaard Jørgensen; Jean-Baptiste Jouffray; Jean-Baptiste Jouffray;pmid: 31695208
Much of the Earth's biosphere has been appropriated for the production of harvestable biomass in the form of food, fuel and fibre. Here we show that the simplification and intensification of these systems and their growing connection to international markets has yielded a global production ecosystem that is homogenous, highly connected and characterized by weakened internal feedbacks. We argue that these features converge to yield high and predictable supplies of biomass in the short term, but create conditions for novel and pervasive risks to emerge and interact in the longer term. Steering the global production ecosystem towards a sustainable trajectory will require the redirection of finance, increased transparency and traceability in supply chains, and the participation of a multitude of players, including integrated 'keystone actors' such as multinational corporations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1712-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 231 citations 231 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1712-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Eylem, Elma; Martin, Gullström; Saleh A S, Yahya; Jean-Baptiste, Jouffray; Holly K, East; Magnus, Nyström;pmid: 36549237
We explored the extent of post-bleaching impacts, caused by the 2014-2016 El Niño Southern Oscillation (ENSO) event, on benthic community structure (BCS) and herbivores (fish and sea urchins) on seven fringing reefs, with differing protection levels, in Zanzibar, Tanzania. Results showed post-bleaching alterations in BCS, with up to 68 % coral mortality and up to 48 % increase in turf algae cover in all reef sites. Herbivorous fish biomass increased after bleaching and was correlated with turf algae increase in some reefs, while the opposite was found for sea urchin densities, with significant declines and complete absence. The severity of the impact varied across individual reefs, with larger impact on the protected reefs, compared to the unprotected reefs. Our study provides a highly relevant reference point to guide future research and contributes to our understanding of post-bleaching impacts, trends, and evaluation of coral reef health and resilience in the region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2022.114479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2022.114479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, Fiji, AustraliaPublisher:Frontiers Media SA Amanda K. Ford; Amanda K. Ford; Amanda K. Ford; Amanda K. Ford; Jean-Baptiste Jouffray; Jean-Baptiste Jouffray; Albert V. Norström; Bradley R. Moore; Bradley R. Moore; Bradley R. Moore; Maggy M. Nugues; Maggy M. Nugues; Gareth J. Williams; Sonia Bejarano; Franck Magron; Christian Wild; Sebastian C. A. Ferse; Sebastian C. A. Ferse;Human activities are changing ecosystems at an unprecedented rate, yet large-scale studies into how local human impacts alter natural systems and interact with other aspects of global change are still lacking. Here we provide empirical evidence that local human impacts fundamentally alter relationships between ecological communities and environmental drivers. Using tropical coral reefs as a study system, we investigated the influence of contrasting levels of local human impact using a spatially extensive dataset spanning 62 outer reefs around inhabited Pacific islands. We tested how local human impacts (low versus high determined using a threshold of 25 people km−2 reef) affected benthic community (i) structure, and (ii) relationships with environmental predictors using pre-defined models and model selection tools. Data on reef depth, benthic assemblages, and herbivorous fish communities were collected from field surveys. Additional data on thermal stress, storm exposure, and market gravity (a function of human population size and reef accessibility) were extracted from public repositories. Findings revealed that reefs subject to high local human impact were characterised by relatively more turf algae (>10% higher mean absolute coverage) and lower live coral cover (9% less mean absolute coverage) than reefs subject to low local human impact, but had similar macroalgal cover and coral morphological composition. Models based on spatio-physical predictors were significantly more accurate in explaining the variation of benthic assemblages at sites with low (mean adjusted-R2 = 0.35) rather than high local human impact, where relationships became much weaker (mean adjusted-R2 = 0.10). Model selection procedures also identified a distinct shift in the relative importance of different herbivorous fish functional groups in explaining benthic communities depending on the local human impact level. These results demonstrate that local human impacts alter natural systems and indicate that projecting climate change impacts may be particularly challenging at reefs close to higher human populations, where dependency and pressure on ecosystem services are highest.
Frontiers in Marine ... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of South Pacific: USP Electronic Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.571115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of South Pacific: USP Electronic Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.571115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu